Fock空间中有界小Hankel算子的符号
The Symbol Functions of Bounded Small Hankel Operatorsbetween Different Fock Space
                  
              
    
                  
                    
                    摘要: 
	对于 α
1,α
2 > 0, 1 < p
2 < p
1 < ∞,本文考察当小 Hankel 算子h
fα2从F
α1p1 到
Fα2p2 有界时,其符号函数f有何性质。
                
 
              
                
                    Abstract: 
For α1,α2 > 0, 1 < p2 < p1 < ∞, we study the property of symbol functions f when the small Hankel operators hfα2 are bounded from Fα1p1 to Fα2p2.
                
                   
                  
    
  
 
     
    
    
                
         
                
                
                 
                
                    
                        参考文献
                        
                            
                                    
                                        | [1] | Berger, C.A. and Coburn, L.A. (1987) Toeplitz Operators on the Segal-Bargmann Space.
Transactions of the American Mathematical Society, 301, 813-829. https://doi.org/10.1090/S0002-9947-1987-0882716-4
 | 
                     
                                
                                    
                                        | [2] | Berger, C.A. and Coburn, L.A. (1994) Heat Flow and Berezin-Toeplitz Estimates. American
Journal of Mathematics, 116, 563-590. https://doi.org/10.2307/2374991
 | 
                     
                                
                                    
                                        | [3] | Janson, S., Peetre, J. and Rochberg, R. (1987) Hankel Forms and the Fock Space. Revista
Matem´atica Iberoamericana, 3, 61-138. https://doi.org/10.4171/RMI/46
 | 
                     
                                
                                    
                                        | [4] | Tung, J. (2005) Fock Spaces. Ph.D. Thesis, University of Michigan, Ann Arbor. | 
                     
                                
                                    
                                        | [5] | Zhu, K.H. (2012) Analysis on Fock Spaces. Springer, New York. |