| [1] | Treiber, T., Treiber, N. and Meister, G. (2018) Regulation of microRNA Biogenesis and Its Crosstalk with Other Cellular Pathways. Nature Reviews Molecular Cell Biology, 20, 5-20. https://doi.org/10.1038/s41580-018-0059-1
 | 
                     
                                
                                    
                                        | [2] | Li, Y. and Kowdley, K.V. (2012) MicroRNAs in Common Human Diseases. Genomics, Proteomics and Bioinformatics, 10, 246-253. https://doi.org/10.1016/j.gpb.2012.07.005
 | 
                     
                                
                                    
                                        | [3] | Committee on Practice Bulletins—Obstetrics (2017) Practice Bulletin No. 180: Gestational Diabetes Mellitus. Obstetrics & Gynecology, 130, e17-e37. https://doi.org/10.1097/AOG.0000000000002159
 | 
                     
                                
                                    
                                        | [4] | Chiefari, E., Arcidiacono, B., Foti, D., et al. (2017) Gestational Diabetes Mellitus: An Updated Overview. Journal of Endocrinological Investigation, 40, 899-909. https://doi.org/10.1007/s40618-016-0607-5
 | 
                     
                                
                                    
                                        | [5] | McIntyre, H.D., Catalano, P., Zhang, C., Desoye, G., Mathiesen, E.R. and Damm, P. (2019) Gestational Diabetes Mellitus. Nature Reviews Disease Primers, 5, 47. https://doi.org/10.1038/s41572-019-0098-8
 | 
                     
                                
                                    
                                        | [6] | 李金英, 马晓娟. 妊娠期糖尿病发生的危险因素分析及对妊娠结局的影响[J]. 解放军医药杂志, 2020, 32(2): 67-70. | 
                     
                                
                                    
                                        | [7] | 赵明亮. 早期诊断和治疗对妊娠糖尿病患者妊娠结局的影响[J]. 糖尿病新世界, 2019, 22(15): 34-35. | 
                     
                                
                                    
                                        | [8] | Condrat, C.E., Thompson, D.C., Barbu, M.G., et al. (2020) miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells, 9, 276. https://doi.org/10.3390/cells9020276
 | 
                     
                                
                                    
                                        | [9] | Pillar, N., Yoffe, L., Hod, M. and Shomron, N. (2015) The Possible Involvement of microRNAs in Preeclampsia and Gestational Diabetes Mellitus. Best Practice & Research: Clinical Obstetrics & Gynaecology, 29, 176-182. https://doi.org/10.1016/j.bpobgyn.2014.04.021
 | 
                     
                                
                                    
                                        | [10] | Bhaskaran, M. and Mohan, M. (2014) MicroRNAs: History, Biogenesis, and Their Evolving Role in Animal Development and Disease. Veterinary Pathology, 51, 759-774. https://doi.org/10.1177/0300985813502820
 | 
                     
                                
                                    
                                        | [11] | Yi, R., Qin, Y., Macara, I.G., et al. (2003) Exportin-5 Mediates the Nuclear Export of Pre-microRNAs and Short Hairpin RNAs. Genes & Development, 17, 3011-3016. https://doi.org/10.1101/gad.1158803
 | 
                     
                                
                                    
                                        | [12] | O’Brien, J., Hayder, H., Zayed, Y. and Peng, C. (2018) Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology (Lausanne), 9, 402. https://doi.org/10.3389/fendo.2018.00402
 | 
                     
                                
                                    
                                        | [13] | Ipsaro, J.J. and Joshua-Tor, L. (2015) From Guide to Target: Molecular Insights into Eukaryotic RNA-Interference Machinery. Nature Structural & Molecular Biology, 22, 20-28. https://doi.org/10.1038/nsmb.2931
 | 
                     
                                
                                    
                                        | [14] | Zhang, J., Zhou, W., Liu, Y., Liu, T., Li, C. and Wang, L. (2018) Oncogenic Role of microRNA-532-5p in Human Colorectal Cancer via Targeting of the 5’UTR of RUNX3. Oncology Letters, 15, 7215-7220. https://doi.org/10.3892/ol.2018.8217
 | 
                     
                                
                                    
                                        | [15] | Wang, Y., Zhang, X., Li, H., Yu, J. and Ren, X. (2013) The Role of miRNA-29 Family in Cancer. European Journal of Cell Biology, 92, 123-128. https://doi.org/10.1016/j.ejcb.2012.11.004
 | 
                     
                                
                                    
                                        | [16] | Kriegel, A.J., Liu, Y., Fang, Y., Ding, X. and Liang, M. (2012) The miR-29 Family: Genomics, Cell Biology, and Relevance to Renal and Cardiovascular Injury. Physiological Genomics, 44, 237-244. https://doi.org/10.1152/physiolgenomics.00141.2011
 | 
                     
                                
                                    
                                        | [17] | Dooley, J., Garcia-Perez, J.E., Sreenivasan, J., et al. (2016) The microRNA-29 Family Dictates the Balance between Homeostatic and Pathological Glucose Handling in Diabetes and Obesity. Diabetes, 65, 53-61. https://doi.org/10.2337/db15-0770
 | 
                     
                                
                                    
                                        | [18] | Steiner, D.F., Thomas, M.F., Hu, J.K., Yang, Z., Babiarz, J.E., Allen, C.D.C., Ansel, K.M., et al. (2011) MicroRNA-29 Regulates T-Box Transcription Factors and Interferon-γ Production in Helper T Cells. Immunity, 35, 169-181. https://doi.org/10.1016/j.immuni.2011.07.009
 | 
                     
                                
                                    
                                        | [19] | Hu, W., Dooley, J., Chung, S.S., Chandramohan, D., Cimmino, L., Mukherjee, S., Park, C.Y., et al. (2015) miR-29a Maintains Mouse Hematopoietic Stem Cell Self-Renewal by Regulating Dnmt3a. Blood, 125, 2206-2216. https://doi.org/10.1182/blood-2014-06-585273
 | 
                     
                                
                                    
                                        | [20] | Park, S.-Y., Lee, J.H., Ha, M., Nam, J.-W. and Kim, V.N. (2009) miR-29 miRNAs Activate p53 by Targeting p85α and CDC42. Nature Structural & Molecular Biology, 16, 23-29. https://doi.org/10.1038/nsmb.1533
 | 
                     
                                
                                    
                                        | [21] | Fan, L., Shan, A., Su, Y., et al. (2020) MiR-221/222 Inhibit Insulin Production of Pancreatic β-Cells in Mice. Endocrinology, 161, bqz027. https://doi.org/10.1210/endocr/bqz027
 | 
                     
                                
                                    
                                        | [22] | 钟晓武, 青玉凤, 杨其彬, 何泳龙, 赵明才, 谢文光, 周京国. miR-223基因家族的分子进化与靶基因预测[J]. 川北医学院学报, 2016, 31(3): 315-320. | 
                     
                                
                                    
                                        | [23] | Chen, Q., Wang, H., Liu, Y., et al. (2012) Inducible microRNA-223 Down-Regulation Promotes TLR-Triggered IL-6 and IL-1beta Production in Macrophages by Targeting STAT3. PLoS ONE, 7, e42971. https://doi.org/10.1371/journal.pone.0042971
 | 
                     
                                
                                    
                                        | [24] | Liang, Y.Z., Li, J.J., Xiao, H.B., He, Y., Zhang, L. and Yan, Y.X. (2018) Identification of Stress-Related microRNA Biomarkers in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Journal of Diabetes, 12, 633-644. https://doi.org/10.1111/1753-0407.12643
 | 
                     
                                
                                    
                                        | [25] | Lee, K.H., Chen, Y.L., Yeh, S.D., Hsiao, M., Lin, J.T., Goan, Y.G. and Lu, P.J. (2009) MicroRNA-330 Acts as Tumor Suppressor and Induces Apoptosis of Prostate Cancer Cells through E2F1-Mediated Suppression of Akt Phosphorylation. Oncogene, 28, 3360-3370. https://doi.org/10.1038/onc.2009.192
 | 
                     
                                
                                    
                                        | [26] | Sun, J., Huang, Q., Li, S., Meng, F., Li, X. and Gong, X. (2018) miR-330-5p/Tim-3 Axis Regulates Macrophage M2 Polarization and Insulin Resistance in Diabetes Mice. Molecular Immunology, 95, 107-113. https://doi.org/10.1016/j.molimm.2018.02.006
 | 
                     
                                
                                    
                                        | [27] | Pfeiffer, S., Sánchez-Lechuga, B., Donovan, P., Halang, L., Prehn, J.H.M., Campos-Caro, A., Byrne, M.M. and López- Tinoco, C. (2020) Circulating miR-330-3p in Late Pregnancy Is Associated with Pregnancy Outcomes among Lean Women with GDM. Scientific Reports, 10, Article No. 908. https://doi.org/10.1038/s41598-020-57838-6
 | 
                     
                                
                                    
                                        | [28] | Bentwich, I., Avniel, A., Karov, Y., et al. (2005) Identification of Hundreds of Conserved and Nonconserved Human microRNAs. Nature Genetics, 37, 766-770. https://doi.org/10.1038/ng1590
 | 
                     
                                
                                    
                                        | [29] | Hanna, J., Hossain, G.S. and Kocerha, J. (2019) The Potential for microRNA Therapeutics and Clinical Research. Frontiers in Genetics, 10, 478. https://doi.org/10.3389/fgene.2019.00478
 | 
                     
                                
                                    
                                        | [30] | Hammond, S.M. (2015) An Overview of microRNAs. Advanced Drug Delivery Reviews, 87, 3-14. https://doi.org/10.1016/j.addr.2015.05.001
 | 
                     
                                
                                    
                                        | [31] | Song, H., Ding, L., Zhang, S. and Wang, W. (2018) MiR-29 Family Members Interact with SPARC to Regulate Glucose Metabolism. Biochemical and Biophysical Research Communications, 497, 667-674. https://doi.org/10.1016/j.bbrc.2018.02.129
 | 
                     
                                
                                    
                                        | [32] | 倪雯, 刘佳, 张弘雎. miR-29、miR-200a在妊娠期糖尿病者外周血中表达及临床意义[J]. 中国计划生育学杂志, 2018, 26(10): 947-950. | 
                     
                                
                                    
                                        | [33] | Massart, J., Sjögren, R.J.O., Lundell, L.S., et al. (2017) Altered miR-29 Expression in Type 2 Diabetes Influences Glucose and Lipid Metabolism in Skeletal Muscle. Diabetes, 66, 1807-1818. https://doi.org/10.2337/db17-0141
 | 
                     
                                
                                    
                                        | [34] | Hung, Y.H., Kanke, M., Kurtz, C.L., et al. (2019) Acute Suppression of Insulin Resistance-Associated Hepatic miR-29 in Vivo Improves Glycemic Control in Adult Mice. Physiological Genomics, 51, 379-389. https://doi.org/10.1152/physiolgenomics.00037.2019
 | 
                     
                                
                                    
                                        | [35] | 孙大光. MiR-29b与妊娠糖尿病的相关性及其分子机制的研究[D]: [博士学位论文]. 北京: 北京协和医学院, 2017. | 
                     
                                
                                    
                                        | [36] | Sebastiani, G., Guarino, E., Grieco, G.E., Formichi, C., Delli Poggi, C., Ceccarelli, E. and Dotta, F. (2017) Circulating microRNA (miRNA) Expression Profiling in Plasma of Patients with Gestational Diabetes Mellitus Reveals Upregulation of miRNA miR-330-3p. Frontiers in Endocrinology (Lausanne), 8, 345. https://doi.org/10.3389/fendo.2017.00345
 | 
                     
                                
                                    
                                        | [37] | Xiao, Y., Ding, J., Shi, Y., et al. (2020) MiR-330-3p Contributes to INS-1 Cell Dysfunction Bytargeting Glucokinase in Gestational Diabetes Mellitus. Journal of Obstetrics and Gynaecology Research, 46, 864-875. https://doi.org/10.1111/jog.14249
 | 
                     
                                
                                    
                                        | [38] | Pfeiffer, S., Sánchez-Lechuga, B., Donovan, P., et al. (2017) Circulating microRNA (miRNA) Expression Profiling in Plasma of Patients with Gestational Diabetes Mellitus Reveals Upregulation of miRNA miR-330-3p. Frontiers in Endocrinology (Lausanne), 8, 345. | 
                     
                                
                                    
                                        | [39] | Zhao, H. and Tao, S. (2019) MiRNA-221 Protects Islet β Cell Function in Gestational Diabetes Mellitus by Targeting PAK1. Biochemical and Biophysical Research Communications, 520, 218-224. https://doi.org/10.1016/j.bbrc.2019.09.139
 | 
                     
                                
                                    
                                        | [40] | Lustig, Y., Barhod, E., Ashwal-Fluss, R., Gordin, R., Shomron, N., Baruch-Umansky, K., et al. (2014) RNA-Binding Protein PTB and microRNA-221 Coregulate AdipoR1 Translation and Adiponectin Signaling. Diabetes, 63, 433-445. https://doi.org/10.2337/db13-1032
 | 
                     
                                
                                    
                                        | [41] | Peng, J., Zhou, Y., Deng, Z., et al. (2018) miR-221 Negatively Regulates Inflammation and Insulin Sensitivity in White Adipose Tissue by Repression of Sirtuin-1 (SIRT1). Journal of Cellular Biochemistry, 119, 6418-6428. https://doi.org/10.1002/jcb.26589
 | 
                     
                                
                                    
                                        | [42] | Pheiffer, C., Dias, S., Rheeder, P. and Adam, S. (2018) Decreased Expression of Circulating miR-20a-5p in South African Women with Gestational Diabetes Mellitus. Molecular Diagnosis & Therapy, 22, 345-352. https://doi.org/10.1007/s40291-018-0325-0
 | 
                     
                                
                                    
                                        | [43] | Shi, Z., Zhao, C., Guo, X., Ding, H., Cui, Y., Shen, R., et al. (2014) Differential Expression of MicroRNAs in Omental Adipose Tissue from Gestational Diabetes Mellitus Subjects Reveals miR-222 as a Regulator of ERalpha Expression in Estrogen-Induced Insulin Resistance. Endocrinology, 155, 1982-1990. https://doi.org/10.1210/en.2013-2046
 | 
                     
                                
                                    
                                        | [44] | Yoffe, L., Polsky, A., Gilam, A., Raff, C., Mecacci, F., Ognibene, A., Crispi, F., Gratacós, E., Kanety, H., Mazaki-Tovi, S., Shomron, N. and Hod, M. (2019) Early Diagnosis of Gestational Diabetes Mellitus Using Circulating microRNAs. European Journal of Endocrinology, 181, 565-577. https://doi.org/10.1530/EJE-19-0206
 | 
                     
                                
                                    
                                        | [45] | Cristina López-Tinoco, M.R.A.G. (2013) Oxidative Stress and Antioxidant Status in Patients with Late-Onset Gestational Diabetes Mellitus. Acta Diabetologica, 50, 201-208. https://doi.org/10.1007/s00592-011-0264-2
 | 
                     
                                
                                    
                                        | [46] | Li, Y., Deng, S., Peng, J., et al. (2019) MicroRNA-223 Is Essential for Maintaining Functional β-Cell Mass during Diabetes through Inhibiting both FOXO1 and SOX6 Pathways. Journal of Biological Chemistry, 294, 10438-10448. https://doi.org/10.1074/jbc.RA119.007755
 | 
                     
                                
                                    
                                        | [47] | Ding, X., Jian, T., Wu, Y., et al. (2019) Ellagic Acid Ameliorates Oxidative Stress and Insulin Resistance in High Glucose-Treated HepG2 Cells via miR-223/keap1-Nrf2 Pathway. Biomedicine & Pharmacotherapy, 110, 85-94. https://doi.org/10.1016/j.biopha.2018.11.018
 | 
                     
                                
                                    
                                        | [48] | Wang, Y., Yu, H., Liu, F. and Song, X. (2019) Analysis of Key Genes and Their Functions in Placental Tissue of Patients with Gestational Diabetes Mellitus. Reproductive Biology and Endocrinology, 17, 104. https://doi.org/10.1186/s12958-019-0546-z
 |