|
[1]
|
Bonan, G.B. (2008) Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science, 320, 1444-1449. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Birdsey, R., Pregitzer, K. and Lucier, A. (2006) Forest Carbon Management in the United States: 1600-2100. Journal of Environmental Quality, 35, 1461-1469. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Giglio, L., et al. (2006) Global Estimation of Burned Area Using MODIS Active Fire Observations. Atmospheric Chemistry and Physics, 6, 957-974. [Google Scholar] [CrossRef]
|
|
[4]
|
Schelhaas, M.-J., Nabuurs, G.-J. and Schuck, A. (2003) Natural Disturbances in the European Forests in the 19th and 20th Centuries. Global Change Biology, 9, 1620-1633. [Google Scholar] [CrossRef]
|
|
[5]
|
Ding, Y., Zang, R., Lu, X. and Huang, J. (2017) The Im-pacts of Selective Logging and Clear-Cutting on Woody Plant Diversity after 40 Years of Natural Recovery in a Tropical Montane Rain Forest, South China. Science of the Total Environment, 579, 1683-1691. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Pei, Z., Eichenberg, D., Bruelheide, H., Kröber, W., Kühn, P., Li, Y., Von Oheimb, G., Purschke, O., Scholten, T., Buscot, F. and Gutknecht, J.L.M. (2016) Soil and Tree Species Traits both Shape Soil Microbial Communities during Early Growth of Chinese Subtropical Forests. Soil Biology and Biochemistry, 96, 180-190. [Google Scholar] [CrossRef]
|
|
[7]
|
Bock, M.D. and Van Rees, K.C.J. (2002) Mechanical Site Preparation Impacts on Soil Properties and Vegetation Communities in the Northwest Territories. The Canadian Journal of Forest Research, 32, 1381-1392. [Google Scholar] [CrossRef]
|
|
[8]
|
满秀玲, 屈宜春, 蔡体久, 佟德海. 森林采伐与造林对土壤化学性质的影响[J]. 东北林业大学学报, 1998, 26(4): 15-17.
|
|
[9]
|
Arocena, J.M. and Opio, C. (2003) Prescribed Fire-Induced Changes in Properties of Sub-Boreal Forest Soils. Geoderma, 113, 1-16. [Google Scholar] [CrossRef]
|
|
[10]
|
Hamman, S.T., Burke, I.C. and Knapp, E.E. (2008) Soil Nutrients and Microbial Activity after Early and Late Season Prescribed Burns in a Sierra Nevada Mixed Conifer Forest. Forest Ecology and Management, 256, 367-374. [Google Scholar] [CrossRef]
|
|
[11]
|
Certini, G. (2005) Effects of Fire on Properties of Forest Soils: A Review. Oecologia, 143, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Day, N.J., Dunfield, K.E., Johnstone, J.F., Mack, M.C., Turetsky, M.R., Walker, X.J., White, A.L. and Baltzer, J.L. (2019) Wildfire Severity Reduces Richness and Alters Composition of Soil Fungal Communities in Boreal Forests of Western Canada. Global Change Biology, 25, 2310-2324. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Garduńo, H.R., Fernald, A.G., Cibils, A.F. and VanLeeuwen, D.M. (2010) Response of Understory Vegetation and Soil Moisture to Infrequent Heavy Defoliation of Chemically Thinned Juniper Woodland. Journal of Arid Environments, 74, 291-297. [Google Scholar] [CrossRef]
|
|
[14]
|
Adams, P.W., Flint, A.L. and Fredriksen, R.L. (1991) Long-Term Patterns in Soil Moisture and Revegetation after a Clearcut of a Douglas-Fir Forest in Oregon. Forest Ecology and Management, 41, 249-263. [Google Scholar] [CrossRef]
|
|
[15]
|
Ritter, E., Dalsgaard, L. and Einhorn, K.S. (2005) Light, Temperature and Soil Moisture Regimes Following Gap Formation in Semi-Natural Beech-Dominated Forest in Den-mark. Forest Ecology and Management, 206, 15-33. [Google Scholar] [CrossRef]
|
|
[16]
|
Jehangir, A., Yousuf, A.R., Reshi, Z.A., Tanveer, A. and Ah-mad, A. (2012) Comparison of Physical, Chemical and Microbial Properties of Soils in a Clear-Cut and Adjacent Intact Forest in North Western Himalaya, India. International Journal of Soil Science, 7, 71-81. [Google Scholar] [CrossRef]
|
|
[17]
|
张亨宇. 火干扰对大兴安岭北方森林土壤性质和碳氮磷化学计量特征的影响[D]: [硕士学位论文]. 沈阳: 沈阳师范大学, 2019.
|
|
[18]
|
吴博雨. 火烧对森林土壤性状的影响及土壤质量综合评价[D]: [硕士学位论文]. 呼和浩特: 内蒙古农业大学, 2017.
|
|
[19]
|
Merilä, P., Mustajärvi, K., Helmisaari, H., Hilli, S., Lindroos, A., Nieminen, T.M., et al. (2014) Above- and Below- Ground N Stocks in Coniferous Boreal Forests in Finland: Implications for Sustainability of More Intensive Biomass Utilization. Forest Ecology & Manage-ment, 311, 17-28. [Google Scholar] [CrossRef]
|
|
[20]
|
Palviainen, M., Finér, L., Kurka, A.M., Mannerkoski, H., Piirainen, S. and Starr, M. (2004) Decomposition and Nutrient Release from Logging Residues after Clear-Cutting of Mixed Boreal Forest. Plant & Soil, 263, 53-67. [Google Scholar] [CrossRef]
|
|
[21]
|
Palviainen, M., Finér, L., Laiho, R., Shorohova, E., Kapitsa, E. and Vanha-Majamaa, I. (2010) Carbon and Nitrogen Release from Decomposing Scots Pine, Norway Spruce and Silver Birch Stumps. Forest Ecology & Management, 259, 390-398. [Google Scholar] [CrossRef]
|
|
[22]
|
Olsson, B.A., Staaf, H., Lundkvist, H., Bengtsson, J. and Rosén, K. (1996) Carbon and Nitrogen in Coniferous Forest Soils after Clear-Felling and Harvests of Different Intensity. Forest Ecology and Management, 82, 19-32. [Google Scholar] [CrossRef]
|
|
[23]
|
Thonicke, K., Venevsky, S., Sitch, S. and Cramer, W. (2001) The Role of Fire Disturbance for Global Vegetation Dynamics: Coupling Fire into a Dynamic Global Vegetation Model. Global Ecology and Biogeography, 10, 661-677. [Google Scholar] [CrossRef]
|
|
[24]
|
Kashian, D.M., Romme, W.H., Tinker, D.B., Turner, M.G. and Ryan, M.G. (2013) Post-Fire Changes in Forest Carbon Storage over a300-Year Chronosequence of Pinus contorta-Dominated Forests. Ecological Monographs, 83, 49-66. [Google Scholar] [CrossRef]
|
|
[25]
|
Koster, K., Köster, E., Orumaa, A., Parro, K., Jõgiste, K., Berninger, F., et al. (2016) How Time since Forest Fire Affects Stand Structure, Soil Physical-Chemical Properties and Soil CO2 Efflux in Hemiboreal Scots Pine Forest Fire Chronosequence? Forests, 7, 201. [Google Scholar] [CrossRef]
|
|
[26]
|
Seedre, M., Taylor, A.R., Brassard, B.W., Chen, H.Y.H. and Jõgiste, K. (2014) Recovery of Ecosystem Carbon Stocks in Young Boreal Forests: A Comparison of Harvesting and Wildfire Disturbance. Ecosystems, 17, 851-863. [Google Scholar] [CrossRef]
|
|
[27]
|
Nave, L.E., Vance, E.D., Swanston, C.W. and Curtis, P.S. (2010) Harvest Impacts on Soil C Storage in Temperate Forests. Forest Ecology and Management, 259, 857-866. [Google Scholar] [CrossRef]
|
|
[28]
|
Gruber, N. and Galloway, J.N. (2008) An Earth-System Perspective of the Global Nitrogen Cycle. Nature, 451, 293-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H. and Tilman, D.G. (1997) Human Alteration of the Global Nitrogen Cycle: Sources and Consequences. Ecological Applications, 7, 737-750. [Google Scholar] [CrossRef]
|
|
[30]
|
Lindroos, A.J., Tamminen, P., Heikkinen, J. and Ilvesniemi, H. (2016) Effect of Clearcutting and the Amount of Logging Residue on Chemical Composition of Percolation Water in Spruce Stands on Glaciofluvial Sandy Soils in Southern Finland. Boreal Environment Research, 21, 134-148.
|
|
[31]
|
Fisher, R.F. and Binkley, D. (2000) Ecology and Management of Forest Soils. 3rd Edition, Wiley, New York.
|
|
[32]
|
Weston, C.J. and Attiwill, P.M. (1996) Clearfelling and Burning Effects on Nitrogen Mineralization and Leaching in Soils of Old-Age Eucalyptus regnans Forests. Forest Ecology and Management, 89, 13-24. [Google Scholar] [CrossRef]
|
|
[33]
|
Johnson, D.W. and Curtis, P.S. (2001) Effects of Forest Management on Soil C and N Storage: Meta Analysis. Forest Ecology and Management, 140, 227-238. [Google Scholar] [CrossRef]
|
|
[34]
|
Prieto-Fernandez, A., Villar, M.C., Carballas, M. and Carballas, T. (1993) Short-Term Effects of a Wildfire on the Nitrogen Status and Its Mineralization Kinetics in an Atlantic Forest Soil. Soil Biology and Biochemistry, 25, 1657-1664. [Google Scholar] [CrossRef]
|
|
[35]
|
Nielsen, U.N., Osler, G.H.R., Campbell, C.D., Burslem, D.F.R.P. and van der Wal, R. (2010) The Influence of Vegetation Type, Soil Properties and Precipitation on the Composition of Soil Mite and Microbial Communities at the Landscape Scale. Journal of Biogeography, 37, 1317-1328. [Google Scholar] [CrossRef]
|
|
[36]
|
Ahn, J., Song, J., Kim, B., Kim, M., Joa, J. and Weon, H. (2012) Characterization of the Bacterial and Archaeal Communities in Rice Field Soils Subjected to Long-Term Fertilization Practices. Journal of Microbiology, 50, 754-765. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Torsvik, V., Ovreas, L. and Thingstad, T.F. (2002) Prokaryotic Diversity-Magnitude, Dynamics, and Controlling Factors. Science, 296, 1064-1066. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Bakker, M.G., Schlatter, D.C., Otto-Hanson, L. and Kinkel, L.L. (2014) Diffuse Symbioses: Roles of Plant-Plant, Plant-Microbe and Microbe-Microbe Interactions in Structuring the Soil Microbiome. Molecular Ecology, 23, 1571-1583. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
雷蕾. 马尾松林土壤呼吸与微生物对不同采伐方式的响应[D]: [博士学位论文]. 北京: 中国林业科学研究院, 2015.
|
|
[40]
|
龙涛, 蓝嘉川, 陈厚荣, 王家妍, 谢益君, 陆晓明, 雷丽群, 朱宏光, 温远光, 蔡道雄. 采伐和炼山对马尾松林土壤微生物多样性的影响[J]. 南方农业学报, 2013, 44(8): 1318-1323.
|
|
[41]
|
Hartmann, M., Howes, C.G., VanInsberghe, D., Yu, H., Bachar, D., Christen, R., Henrik Nilsson, R., Hallam, S.J. and Mohn, W.W. (2012) Significant and Persistent Impact of Timber Harvesting on Soil Microbial Communities in Northern Coniferous Forests. The ISME Journal, 6, 2199-2218. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Lehto, T. and Zwiazek, J.J. (2011) Ectomycorrhizas and Water Relations of Trees: A Review. Mycorrhiza, 21, 71-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kernaghan, G. and Patriquin, G. (2011) Host Associations between Fungal Root Endophytes and Boreal Trees. Microbial Ecology, 62, 460-473. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Certini, G. (2005) Effect of Fire on Properties of Forest Soils: A Review. Oecologia, 143, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Cairney, J.W.G. and Bastias, B.A. (2007) Influences of Fire on Forest Soil Fungal Communities. Canadian Journal of Forest Research, 37, 207-215. [Google Scholar] [CrossRef]
|
|
[46]
|
DeBano, L.F., Neary, D.G. and Ffolliott, P.F. (1998) Fire’s Effects on Ecosystems. John Wiley and Sons Inc., New York.
|
|
[47]
|
Prieto-Fernandez, A., Acea, M.J. and Carballas, T. (1998) Soil Microbial and Extractable C and N after Wildfifire. Biology and Fertility of Soils, 27, 132-142. [Google Scholar] [CrossRef]
|
|
[48]
|
Baath, E., Frostegard, A., Pennanen, T. and Fritze, H. (1995) Microbial Community Structure and pH Response in Relation to Soil Organic Matter Quality in Wood-Ash Fertilized, Clear-Cut or Burned Coniferous Forest Soils. Soil Biology and Biochemistry, 27, 229-240. [Google Scholar] [CrossRef]
|
|
[49]
|
Neary, D.G., Klopatek, C.C., DeBano, L.F. and Ffolliott, P.F. (1999) Fire Effects on Belowground Sustainability: A Review and Synthesis. Forest Ecology and Management, 122, 51-71. [Google Scholar] [CrossRef]
|
|
[50]
|
Torres, P. and Honrubia, M. (1997) Changes and Effects of a Natural Fire on Ectomycorrhizal Inoculum Potential of Soil in a Pinus halepensis Forest. Forest Ecology and Management, 96, 189-196. [Google Scholar] [CrossRef]
|
|
[51]
|
Holden, S.R. and Treseder, K.K. (2013) A Meta-Analysis of Soil Microbial Biomass Responses to Forest Disturbances. Frontiers in Microbiology, 4, 573-580. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
郝建茹. 采伐对东北温带次生林土壤微生物碳氮的影响[D]: [硕士学位论文]. 哈尔滨: 东北林业大学, 2010.
|
|
[53]
|
邱雷, 陈信力, 丁辉, 关庆伟. 间伐对侧柏人工林土壤微生物生物量碳、氮的影响[J]. 江苏林业科技, 2013, 40(6): 14-19.
|
|
[54]
|
Holden, S.R. and Treseder, K.K. (2013) A Meta-Analysis of Soil Microbial Biomass Responses to Forest Disturbances. Frontiers in Microbiology, 4, 163. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Ilstedt, U., Giesler, R., Nordgren, A. and Malmer, A. (2003) Changes in Soil Chemical and Microbial Properties after a Wildfire in a Tropical Rainforest in Sabah, Malaysia. Soil Biology and Biochemistry, 35, 1071-1078. [Google Scholar] [CrossRef]
|
|
[56]
|
DeBano, L.F., Neary, D.G. and Ffolliott, P.F. (1998) Fire Effects on Ecosystems. Wiley, New York.
|
|
[57]
|
Yeager, C.M., Northup, D.E., Grow, C.C., Barns, S.M. and Kuske, C.R. (2005) Changes in Nitrogen-Fixing and Ammonia-Oxidizing Bacterial Communities in Soil of a Mixed Conifer Forest after Wildfire. Applied and Environmental Microbiology, 71, 2713-2722. [Google Scholar] [CrossRef]
|
|
[58]
|
Fritze, H., Pennanen, T. and Pietikainen, J. (1993) Recovery of Soil Microbial Biomass and Activity from Prescribed Burning. Canadian Journal of Forest Research, 23, 1286-1290. [Google Scholar] [CrossRef]
|
|
[59]
|
Dunn, P.H., Barro, S.C. and Poth, M. (1985) Soil-Moisture Affects Survival of Microorganisms in Heated Chaparral Soil. Soil Biology and Biochemistry, 17, 143-148. [Google Scholar] [CrossRef]
|
|
[60]
|
Dooley, S.R. and Treseder, K.K. (2012) The Effect of Fire on Microbial Biomass: A Meta-Analysis of Field Studies. Biogeochemistry, 109, 49-61. [Google Scholar] [CrossRef]
|
|
[61]
|
朴河春, 洪业汤, 袁芷云. 贵州山区土壤中微生物生物量是能源物质碳流动的源与汇[J]. 生态学杂志, 2001, 20(1): 33-37.
|
|
[62]
|
Damon, C., Lehembre, F., Oger-Desfeux, C., Luis, P., Ranger, J., Fraissinet-Tachet, L. and Marmeisse, R. (2012) Metatranscriptomics Reveals the Diversity of Genes Expressed by Eukaryotes in Forest Soils. PLoS ONE, 7, e28967. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Bini, D., dos Santos, C.A., do Carmo, K.B., Kishino, N. andrade, G., Zangaro, W. and Nogueira, M.A. (2013) Effects of Land Use on Soil Organic Carbon and Microbial Processes Associated with Soil Health in Southern Brazil. European Journal of Soil Biology, 55, 117-123. [Google Scholar] [CrossRef]
|
|
[64]
|
Raiesi, F. and Beheshti, A. (2015) Microbiological Indicators of Soil Quality and Degradation Following Conversion of Native Forests to Continuous Crop Lands. Ecological Indicators, 50, 173-185. [Google Scholar] [CrossRef]
|
|
[65]
|
Ginzburg, O. and Steinberger, Y. (2012) Effects of Forest Wildfire on Soil Microbial Community Activity and Chemical Components on Atemporal-Seasonal Scale. Plant Soil, 360, 243-257. [Google Scholar] [CrossRef]
|
|
[66]
|
Kabzems, R. and Haeussler, S. (2005) Soil Properties, Aspen, and White Spruce Responses 5 Years after Organic Matter Removal and Compaction Treatments. Canadian Journal of Forest Research, 35, 2045-2055. [Google Scholar] [CrossRef]
|
|
[67]
|
Mariani, L., Chang, S.X. and Kabzems, R. (2006) Effects of Tree Harvesting, Forest Floor Removal, and Compaction on Soil Microbial Biomass, Microbial Respiration, and N Availability in a Boreal Aspen Forest in British Columbia. Soil Biology and Biochemistry, 38, 1734-1744. [Google Scholar] [CrossRef]
|
|
[68]
|
Busse, M.D., Hubbert, K.R., Fiddler, G.O., Shestak, C.J. and Powers, R.F. (2005) Lethal Soil Temperatures during Burning of Masticated Forest Residues. International Journal of Wildland Fire, 14, 267-276. [Google Scholar] [CrossRef]
|
|
[69]
|
Hart, S.C., Deluca, T.H., Newman, S.G., Mackenzie, M.D. and Boyle, S.I. (2005) Post-Fire Vegetative Dynamics as Drivers of Microbial Community Structure and Function in Forest Soils. Forest Ecology and Management, 220, 166-184. [Google Scholar] [CrossRef]
|
|
[70]
|
Grogan, P., Baar, J. and Bruns, T.D. (2000) Below-Ground Ectomycorrhizal Community Structure in a Recently Burned Bishop Pine Forest. Journal of Ecology, 88, 1051-1062. [Google Scholar] [CrossRef]
|
|
[71]
|
Barker, J.S., Simard, S.W., Jones, M.D. and Durall, D.M. (2013) Ectomycorrhizal Fungal Community Assembly on Regenerating Douglas-Fir after Wildfire and Clearcut Harvesting. Oecologia, 172, 1179-1189. [Google Scholar] [CrossRef] [PubMed]
|