|
[1]
|
Wang, Y., Wang, B., Fu, J. and Ruan T. (2013) Research Progress of New Organic Pollutants. Chemistry Bulletin, 76, 3-14.
|
|
[2]
|
Bradford, S., Morales, V., Zhang, W., Harvey, R.W., Packman, A.I., Mohanram, A., et al. (2013) Transport and Fate of Microbial Pathogens in Agricultural Settings. Critical Reviews in Environmental Science and Technology, 43, 775-893. [Google Scholar] [CrossRef]
|
|
[3]
|
Martinez, J. (2008) Antibiotics and Antibiotic Resistance Genes in Natural Environments. Science, 321, 365-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Aminov, R. and Mackie, R.I. (2007) Evolution and Ecology of An-tibiotic Resistance Genes. FEMS Microbiology Letters, 271, 147-161. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wright, M., Baker-Austin, C. and Lindell, A. (2008) In-fluence of Industrial Contamination on Mobile Genetic Elements: Class 1 Integron Abundance and Gene Cassette Struc-ture in Aquatic Bacterial Communities. The ISME Journal, 2, 417- 428. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhang, Y., Gu, A., Cen, T., Li, X., He, M., Li, D., et al. (2018) Sub-Inhibitory Concentrations of Heavy Metals Facilitate the Horizontal Transfer of Plasmid-Mediated Antibiotic Re-sistance Genes in Water Environment. Environmental Pollution, 237, 74-82. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Qiu, Z., Yu, Y., Chen, Z., Jin, M., Yang, D., Zhao, Z., et al. (2012) Nanoalumina Promotes the Horizontal Transfer of Multiresistance Genes Mediated by Plasmids across Genera. Proceedings of the National Academy of Sciences of the United States of America, 109, 4944-4949. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wang, Q., Mao, D. and Luo, Y. (2015) Ionic Liquid Facilitates the Conjugative Transfer of Antibiotic Resistance Genes Mediated by Plasmid RP4. Environmental Science & Technology, 49, 8731-8740. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wang, Y., Lu, J., Mao, L., Li, J., Yuan, Z., Bond, P.L., et al. (2018) Antiepileptic Drug Carbamazepine Promotes Horizontal Transfer of Plasmid-Borne Multi-Antibiotic Resistance Genes within and across Bacterial Genera. The ISME Journal, 13, 509-522. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhang, Y., Gu, A.Z., He, M., Li, D. and Chen, J. (2017) Subin-hibitory Concentrations of Disinfectants Promote the Horizontal Transfer of Multidrug Resistance Genes within and across Genera. Environmental Science & Technology, 51, 570-580. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Sorensen, S., Bailey, M. and Hansen, L. (2005) Studying Plasmid Horizontal Transfer in Situ: A Critical Review. Nature Reviews Microbiology, 3, 700-710. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Von Wintersdorff, C., Penders, J., Van Niekerk, J., Mills, N.D., Majum-der, S., van Alphen, L.B., et al. (2016) Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Frontiers in Microbiology, 7, Article No, 173. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Dodd, M.C. (2012) Potential Impacts of Disinfection Processes on Elimination and Deactivation of Antibiotic Resistance Genes during Water and Wastewater Treatment. Journal of Environmental Monitoring, 14, 1754-1771. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Colomer-Lluch, M., Calero-Caceres, W., Jebri, S., Hmaied, F., Jaime Muniesa, M.L. and Jofre, J. (2014) Antibiotic Resistance Genes in Bacterial and Bacteriophage Fractions of Tunisian and Spanish Wastewaters as Markers to Compare the Antibiotic Resistance Patterns in Each Population. Environment International, 73, 167-175. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Waksman, S.A. and Woodruff, H.B. (1941) Actinomyces Anti-bioticus, a New Soil Organism Antagonistic to Pathogenic and Non-Pathogenic Bacteria. Journal of Bacteriology, 42, 231-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
West, B.M., Liggit, P., Clemans, D.L. and Francoeur, S.N. (2011) Antibiotic Resistance, Gene Transfer, and Water Quality Patterns Observed in Waterways Near CAFO Farms and Wastewater Treatment Facilities. Water Air & Soil Pollution, 217, 473-489. [Google Scholar] [CrossRef]
|
|
[17]
|
Zhu, N., Jin, H., Ye, X., Liu, W., Li, D., Mustafa Shah, G., et al. (2020) Fate and Driving Factors of Antibiotic Resistance Genes in an Integrated Swine Wastewater Treatment System: From Wastewater to Soil. Science of the Total Environment, 721, Article ID: 137654. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Song, J., Rensing, C., Holm, P.E., Virta, M. and Brandt, K.K. (2017) Comparison of Metals and Tetracycline as Selective Agents for Development of Tetracycline Resistant Bacterial Communities in Agricultural Soil. Environmental Science & Technology, 51, 3040-3047. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Knapp, C.W., Mccluskey, S., Singh, B.K., Campbell, C.D., Hudson, G. and Graham, D.W. (2011) Antibiotic Resistance Gene Abundances Correlate with Metal and Geochemical Conditions in Archived Scottish Soils. PLoS ONE, 6, Article ID: e27300. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Yang, Y., Xu, C., Cao, X., Lin, H. and Wang, J. (2017) Anti-biotic Resistance Genes in Surface Water of Eutrophic Urban Lakes Are Related to Heavy Metals, Antibiotics, Lake Morphology and Anthropic Impact. Ecotoxicology, 26, 831-840. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ji, X., Shen, Q., Liu, F., Ma, J., Xu, G., Wang, Y., et al. (2012) Antibiotic Resistance Gene Abundances Associated with Antibiotics and Heavy Metals in Animal Manures and Agricul-tural Soils Adjacent to Feedlots in Shanghai; China. Journal of Hazardous Materials, 235-236, 178-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wang, J., Wang, J., Zhao, Z., Chen, J., Lu, H., Liu, G., et al. (2017) PAHs Accelerate the Propagation of Antibiotic Resistance Genes in Coastal Water Microbial Community. Envi-ronmental Pollution, 231, 1145-1152. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Anjum, R., Grohmann, E. and Malik, A. (2011) Molecular Characterization of Conjugative Plasmids in Pesticide Tolerant and Multi-Resistant Bacterial Isolates from Contaminated Alluvial Soil. Chemosphere, 84, 175-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Dealtry, S., Holmsgaard, P.N., Dunon, V., Jechalke, S., Ding, G.-C., Krögerrecklenfort, E., et al. (2014) Shifts in Abundance and Diversity of Mobile Genetic Elements after the Introduction of Diverse Pesticides into an On-Farm Biopurification System over the Course of a Year. Applied and En-vironmental Microbiology, 80, 4012-4020. [Google Scholar] [CrossRef]
|
|
[25]
|
Sun, M., Ye, M., Wu, J., Feng, Y., Shen, F., Tian, D., et al. (2015) Impact of Bioaccessible Pyrene on the Abundance of Antibiotic Resistance Genes during Sphingobium sp. and Sophorolipid Enhanced Bioremediation in Soil. Journal of Hazardous Materials, 300, 121-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Sun, M., Ye, M., Wu, J., Feng, Y., Wan, J., Tian, D., et al. (2015) Positive Relationship Detected between Soil Bioaccessible Organic Pollutants and Antibiotic Resistance Genes at Dairy Farms in Nanjing, Eastern China. Environmental Pollution, 206, 421-428. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
张治国, 李斌绪, 李娜, 许坤, 朱昌雄, 李红娜, 等. 污水深度处理工艺对抗生素抗性菌和抗性基因去除研究进展[J]. 农业环境科学学报, 2018, 37(10): 2091-2100.
|
|
[28]
|
Li, S., Zhang, R., Hu, J., Shi, W., Kuang, Y., Guo, X., et al. (2019) Occurrence and Removal of Antibiotics and Antibiotic Resistance Genes in Natural and Constructed Riverine Wetlands in Beijing, China. Science of the Total Environment, 664, 546-553. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yuan, Q.B., Guo, M.T. and Yang, J. (2015) Fate of Antibiotic Resistant Bacteria and Genes during Wastewater Chlorination: Implication for Antibiotic Resistance Control. PLoS ONE, 10, Article ID: e0119403. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Basfar, A.A. and Abdel Rehim, F. (2002) Disinfection of Wastewater from a Riyadh Wastewater Treatment Plant with Ionizing Radiation. Radiation Physics & Chemistry, 65, 527-532. [Google Scholar] [CrossRef]
|
|
[31]
|
Liao, H., Lu, X., Rensing, C., Petri Friman, V., Geisen, S., Chen, Z., et al. (2018) Hyperthermophilic Composting Accelerates the Removal of Antibiotic Resistance Genes and Mobile Genetic Elements in Sewage Sludge. Environmental Science & Technology, 52, 266-276. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Youngquist, C.P., Mitchell, S.M. and Cogger, C.G. (2016) Fate of Antibiotics and Antibiotic Resistance during Digestion and Composting: A Review. Journal of Environmental Quality, 45, 537-545. [Google Scholar] [CrossRef] [PubMed]
|