|
[1]
|
Alvarez, G. A., & Cavanagh, P. (2004). The Capacity of Visual Short-Term Memory Is Set Both by Visual Information Load and by Number of Objects. Psychological Science, 15, 106-111.[CrossRef] [PubMed]
|
|
[2]
|
Baddeley, A. (2012). Working Memory: Theories, Models, and Controversies. Annual Review of Psychology, 63, 1-29.[CrossRef] [PubMed]
|
|
[3]
|
Baddeley, A., Cocchini, G., Della Sala, S., Logie, R. H., & Spinnler, H. (1999). Working Memory and Vigilance: Evidence from Normal Aging and Alzheimer’s Disease. Brain and Cognition, 41, 87-108.[CrossRef] [PubMed]
|
|
[4]
|
Barton, B., Ester, E. F., & Awh, E. (2009). Discrete Resource Allocation in Visual Working Memory. Journal of Experimental Psychology Human Perception and Performance, 35, 1359-1367.[CrossRef] [PubMed]
|
|
[5]
|
Bays, P. M., & Husain, M. (2008). Dynamic Shifts of Limited Working Memory Resources in Human Vision. Science (New York, N.Y.), 321, 851-854.[CrossRef] [PubMed]
|
|
[6]
|
Bocincova, A., van Lamsweerde, A. E., & Johnson, J. S. (2016). Assessing the Evidence for a Cue-Induced Trade-Off between Capacity and Precision in Visual Working Memory Using Mixture Modelling and Bayesian Model Comparison. Visual Cognition, 24, 435-446.[CrossRef] [PubMed]
|
|
[7]
|
Cowan, N. (2001). The Magical Number 4 in Short-Term Memory: A Reconsideration of Mental Storage Capacity. The Behavioral and Brain Sciences, 24, 87-114.[CrossRef]
|
|
[8]
|
Edin, F., Klingberg, T., Johansson, P., McNab, F., Tegnér, J., & Compte, A. (2009). Mechanism for Top-Down Control of Working Memory Capacity. Proceedings of the National Academy of Sciences of the United States of America, 106, 6802-6807.[CrossRef] [PubMed]
|
|
[9]
|
Emrich, S. M., Lockhart, H. A., & Al-Aidroos, N. (2017). Attention Mediates the Flexible Allocation of Visual Working Memory Resources. Journal of Experimental Psychology Human Perception and Performance, 43, 1454-1465.[CrossRef] [PubMed]
|
|
[10]
|
Eng, H. Y., Chen, D., & Jiang, Y. (2005). Visual Working Memory for Simple and Complex Visual Stimuli. Psychonomic Bulletin & Review, 12, 1127-1133.[CrossRef]
|
|
[11]
|
Feldmann-Wüstefeld, T. (2021). Neural Measures of Working Memory in a Bilateral Change Detection Task. Psychophysiology, 58, e13683.[CrossRef] [PubMed]
|
|
[12]
|
Fougnie, D., Cormiea, S. M., Kanabar, A., & Alvarez, G. A. (2016). Strategic Trade-Offs between Quantity and Quality in Working Memory. Journal of Experimental Psychology Human Perception and Performance, 42, 1231-1240.[CrossRef] [PubMed]
|
|
[13]
|
Fukuda, K., Awh, E., & Vogel, E. K. (2010). Discrete Capacity Limits in Visual Working Memory. Current Opinion in Neurobiology, 20, 177-182.[CrossRef] [PubMed]
|
|
[14]
|
Gambarota, F., & Sessa, P. (2019). Visual Working Memory for Faces and Facial Expressions as a Useful “Tool” for Understanding Social and Affective Cognition. Frontiers in Psychology, 10, 2392.[CrossRef] [PubMed]
|
|
[15]
|
Gao, Z., Yin, J., Xu, H., Shui, R., & Shen, M. (2011). Tracking Object Number or Information Load in Visual Working Memory: Revisiting the Cognitive Implication of Contralateral Delay Activity. Biological Psychology, 87, 296-302.[CrossRef] [PubMed]
|
|
[16]
|
Gaspar, J. M., Christie, G. J., Prime, D. J., Jolicœur, P., & McDonald, J. J. (2016). Inability to Suppress Salient Distractors Predicts Low Visual Working Memory Capacity. Pro-ceedings of the National Academy of Sciences of the United States of America, 113, 3693-3698.[CrossRef] [PubMed]
|
|
[17]
|
Gorgoraptis, N., Catalao, R. F., Bays, P. M., & Husain, M. (2011). Dynamic Updating of Working Memory Resources for Visual Objects. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31, 8502-8511.[CrossRef]
|
|
[18]
|
He, X., Zhang, W., Li, C., & Guo, C. (2015). Precision Requirements Do Not Affect the Allocation of Visual Working Memory Capacity. Brain Research, 1602, 136-143.[CrossRef] [PubMed]
|
|
[19]
|
Keshvari, S., van den Berg, R., & Ma, W. J. (2013). No Evidence for an Item Limit in Change Detection. PLoS Computational Biology, 9, e1002927.[CrossRef] [PubMed]
|
|
[20]
|
Lorenc, E. S., Sreenivasan, K. K., Nee, D. E., Vandenbroucke, A., & D’Esposito, M. (2018). Flexible Coding of Visual Working Memory Representations during Distraction. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 38, 5267-5276.[CrossRef]
|
|
[21]
|
Luck, S. J., & Vogel, E. K. (1997). The Capacity of Visual Working Memory for Features and Conjunctions. Nature, 390, 279-281.[CrossRef] [PubMed]
|
|
[22]
|
Luria, R., Balaban, H., Awh, E., & Vogel, E. K. (2016). The Contralateral Delay Activity as a Neural Measure of Visual Working Memory. Neuroscience and Biobehavioral Reviews, 62, 100-108.[CrossRef] [PubMed]
|
|
[23]
|
Ma, W. J. (2018). Problematic Usage of the Zhang and Luck Mixture Model.[CrossRef]
|
|
[24]
|
Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing Concepts of Working Memory. Nature Neuroscience, 17, 347-356.[CrossRef] [PubMed]
|
|
[25]
|
Machizawa, M. G., Driver, J., & Watanabe, T. (2020). Gray Matter Volume in Different Cortical Structures Dissociably Relates to Individual Differences in Capacity and Precision of Visual Working Memory. Cerebral Cortex (New York, N.Y.: 1991), 30, 4759-4770.[CrossRef] [PubMed]
|
|
[26]
|
Machizawa, M. G., Goh, C. C., & Driver, J. (2012). Human Visual Short-Term Memory Precision Can Be Varied at Will When the Number of Retained Items Is Low. Psychological Science, 23, 554-559.[CrossRef] [PubMed]
|
|
[27]
|
Maniglia, M. R., & Souza, A. S. (2020). Age Differences in the Efficiency of Filtering and Ignoring Distraction in Visual Working Memory. Brain Sciences, 10, 556.[CrossRef] [PubMed]
|
|
[28]
|
McCants, C. W., Katus, T., & Eimer, M. (2019). The Capacity and Resolution of Spatial Working Memory and Its Role in the Storage of Non-Spatial Features. Biological Psychology, 140, 108-118.[CrossRef] [PubMed]
|
|
[29]
|
Murray, A. M., Nobre, A. C., Astle, D. E., & Stokes, M. G. (2012). Lacking Control over the Trade-Off between Quality and Quantity in Visual Short-Term Memory. PLoS ONE, 7, e41223.[CrossRef] [PubMed]
|
|
[30]
|
Ramaty, A., & Luria, R. (2018). Visual Working Memory Cannot Trade Quantity for Quality. Frontiers in Psychology, 9, 719.[CrossRef] [PubMed]
|
|
[31]
|
Rensink, R. A. (2002). Change Detection. Annual Review of Psy-chology, 53, 245-277.[CrossRef] [PubMed]
|
|
[32]
|
Schurgin, M. W. (2018). Visual Memory, the Long and the Short of It: A Review of Visual Working Memory and Long-Term Memory. Attention, Perception & Psychophysics, 80, 1035-1056.[CrossRef] [PubMed]
|
|
[33]
|
Suchow, J. W., Fougnie, D., Brady, T. F., & Alvarez, G. A. (2014). Terms of the Debate on the Format and Structure of Visual Memory. Attention, Perception & Psychophysics, 76, 2071-2079.[CrossRef] [PubMed]
|
|
[34]
|
Vellage, A. K., Müller, P., Schmicker, M., Hopf, J. M., & Müller, N. G. (2019). High Working Memory Capacity at the Cost of Precision? Brain Sciences, 9, 210.[CrossRef] [PubMed]
|
|
[35]
|
Vogel, E. K., & Machizawa, M. G. (2004). Neural Activity Predicts Individual Differences in Visual Working Memory Capacity. Nature, 428, 748-751.[CrossRef] [PubMed]
|
|
[36]
|
Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of Features, Conjunctions and Objects in Visual Working Memory. Journal of Experimental Psychology Human Perception and Performance, 27, 92-114.[CrossRef]
|
|
[37]
|
Ye, C., Hu, Z., Li, H., Ristaniemi, T., Liu, Q., & Liu, T. (2017). A Two-Phase Model of Resource Allocation in Visual Working Memory. Journal of Experimental Psychology Learning, Memory, and Cognition, 43, 1557-1566.[CrossRef] [PubMed]
|
|
[38]
|
Ye, C., Sun, H. J., Xu, Q., Liang, T., Zhang, Y., & Liu, Q. (2019). Working Memory Capacity Affects Trade-Off between Quality and Quantity Only When Stimulus Exposure Duration Is Sufficient: Evidence for the Two-Phase Model. Scientific Reports, 9, Article No. 8727.[CrossRef] [PubMed]
|
|
[39]
|
Ye, C., Zhang, L., Liu, T., Li, H., & Liu, Q. (2014). Visual Working Memory Capacity for Color Is Independent of Representation Resolution. PLoS ONE, 9, e91681.[CrossRef] [PubMed]
|
|
[40]
|
Yoo, A. H., Klyszejko, Z., Curtis, C. E., & Ma, W. J. (2018). Strategic Allocation of Working Memory Resource. Scientific Reports, 8, Article No. 16162.[CrossRef] [PubMed]
|
|
[41]
|
Zhang, W., & Luck, S. J. (2008). Discrete Fixed-Resolution Representations in Visual Working Memory. Nature, 453, 233-235.[CrossRef] [PubMed]
|
|
[42]
|
Zhang, W., & Luck, S. J. (2011). The Number and Quality of Representations in Working Memory. Psychological Science, 22, 1434-1441.[CrossRef] [PubMed]
|