|
[1]
|
D. P. Bentz, M. A. Peltz. Reducing, thermal and autogenous shrin- kage contributions to early-age cracking. ACI Materials Journal, 2008, 105(4): 414-420.
|
|
[2]
|
H. M. Jennings. Refinements to colloid model of C-S-H in cement: CM-II. Cement and Concrete Research, 2008, 38(3): 275- 289.
|
|
[3]
|
J. A. Andrew, J. J. Thomas and H. M. Jennings. Composition and density of nano scale calcium silicate hydrate in cement. Nature Mater, 2007, 35(6): 311-316.
|
|
[4]
|
H. F. W. Taylor. Nano scale microstructure of C-S-H: Current status. Advanced Chemical Mater, 1993, 1(1): 38-46.
|
|
[5]
|
H. M. Ennings. Colloid model of C-S-H and implications to the problem of creep and shrinkage. Concrete Science and Engineering, 2004, 37(1): 59-70.
|
|
[6]
|
G. W. Scherer. Structure and properties of gels. Cement and Con- crete Research, 1999, 29(5): 1149-1157.
|
|
[7]
|
H. F. W. Taylor. Cement chemistry (2nd Edition). London: Tho- mas Telford Ltd., 1997.
|
|
[8]
|
H. M. Jennings, B. J. Dalgleish and P. L. Pratt. Morphological development of hydrating tricalcium silicate as examined by electron microscopy techniques. Journal of the American Ceramic So- ciety, 1981, 64(10): 567-572.
|
|
[9]
|
S. Diamond. In the hydraulic cement pastes: Their structure and properties. Slough: Cement and Concrete Association, 1976.
|
|
[10]
|
T. C. Powers. The physical structure and engineering properties of concrete. PCA Bulletin, 1958, 90: 1-26.
|
|
[11]
|
I. G. Richardson. The calcium silicate hydrates. Cement and Con- crete Research, 2008, 38(2): 137-158.
|
|
[12]
|
R. J. M. Pellenq, N. Lequeux and H. Van Damme. Engineering the bonding scheme in C-S-H: The ion-covanlent framework. Ce- ment and Concrete Research, 2008, 38(2): 159-174.
|
|
[13]
|
J. J. Chen, J. J. Thomas, H. M. Jennings, et al. Solubility and structure of calcium silicate hydrate. Cement and Concrete Re- search, 2004, 34(9): 1499-1599.
|
|
[14]
|
T. C. Powers, L. E. Copeland and J. S. Hayes. Permeability of portland cement paste. Journal of ACI Process, 1954, 51: 285- 298.
|
|
[15]
|
S. Rrunaur. Tobermorite gel-the heart of concrete. American Science, 1962, 50(1): 211-229.
|
|
[16]
|
R. F. Feldmen, P. J. Sereda. A model for hydration Portland cement as deduced from sorption-length change and mechanical properties. Mater Construction, 1968, 6: 509-520.
|
|
[17]
|
F. H. Wittmann. The structure of harden cement paste—A basic for better understantding of the mateiral properties. P.96 in Hy- draulic cement paste: Their structure and properties. Slough: Ce- ment and Concrete Research, 1976.
|
|
[18]
|
R. F. Feldmen, P. J. Sereda. Sorption of water on compacts of bo- ttle hydrated cement I: The sorption and length-change isotherms. Journal of Applied Chemistry, 1964, 14(2): 87-93.
|
|
[19]
|
S. Mindess, J. F. Young and D. Darwin. Concrete (2nd Edition). Pearson Education, Inc., 2002.
|
|
[20]
|
格鲁霍夫斯基, 鲁洛娃, 马克苏洛夫著. 蒲心诚译. 接触硬化胶凝材料及复合材料[M]. 重庆: 重庆大学出版社, 2004: 53- 57.
|
|
[21]
|
D. D. Double, A. Hellawell. The hydration of Portland cement. Nature, 1976, 261: 486-488.
|
|
[22]
|
H. M. Jennings. The developing microstructure in portland cement. S. N. Ghosh, Ed., Advances in cement technology. Oxford: Pergamon Press, 1983: 349-396.
|
|
[23]
|
J. J. Chen, J. J. Thomas, H. M. Jennings, et al. Effects of decalcification on the microstructure and surface area of cement and tricalcium silicate pastes. Cement and Concrete Research, 2004, 34(12): 2297-2307.
|
|
[24]
|
H. M. Jennings, P. Tennis. A model for the developing microstructure in Portland cement pastes. Journal American Ceram Society, 1994, 77(12): 3161-3172.
|
|
[25]
|
H. M. Jennings. A model for the microstructure of calcium silicate hydrate in cement paste. Cement and Concrete Research, 2000, 30(1): 101-116.
|
|
[26]
|
M. C. G. Juenger, H. M. Jennings. Examining the relationship between the microstructure of calcium silicate hydrate and drying shrinkage of cement pastes. Cement and Concrete Research, 2002, 32(2): 289-296.
|
|
[27]
|
F. J. Ulm, V. Matthieu and C. Bobko. Statistical Indentation techniques for hydrated nanocomposite concrete, bone and shale. Georgios constantinides. Journal of American Ceramic Society, 2007, 90(9): 2677-2692.
|
|
[28]
|
C. Georgios, F. J. Ulm. The nanogranular nature of C-S-H. Jour- nal of the Mechanics and Physics of Solids, 2007, 55(1): 64- 90.
|
|
[29]
|
L. Sorelli, C. Georgios, F. J. Ulm, et al. The nano-mechanical sig- nature of Ultra High Performance Concrete by statistical na- noindentation techniques. Cement and Concrete Research, 2008, 38(12): 1447-1456.
|
|
[30]
|
J. J. Thomas, H. M. Jennings. A colloidal interpretation of chemical aging of the C-S-H gel and its effects on the properties of cement paste. Cement and Concrete Research, 2006, 36(1): 30-38.
|
|
[31]
|
H. M. Jennings. Reply to the discussion by J. J. Beaudoin and R. Alizeadad of the paper “Refinements to colloid model of C-S-H in cement: CM-II” by H. M. Jennings. Cement and Concrete Research, 2008, 38(5): 1028-1030 .
|
|
[32]
|
A. Nonat. The structure and stoichiometry of C-S-H. Cement and Concrete Research, 2004, 34(6): 1521-1528.
|
|
[33]
|
D. Viehland, J. F. Li, L. J. Yuan, et al. Mesostructure of calcium silicate hydrate (C-S-H) gels in portland cement paste: Short- range ordering, nanocrystallinity, and local compositional order. Journal of American Ceramic Society, 1996, 79(7): 1731-1744.
|
|
[34]
|
杨南如. C-S-H 凝胶结构模型研究新进展[J]. 南京化工大学学报, 1998, 20(2): 78-85.
|
|
[35]
|
X. Z. Zhang, W. Y. Chang, T. J. Zhang, et al. Nanostructure of calcium silicate hydrate gels in cement paste. Journal of American Ceramic Society, 2000, 83(10): 2600-2604.
|
|
[36]
|
I. G. Richardson. Electron microscopy of cements. In: P. Barnes and J. Bensted, Eds., Structure and performance of cements (2nd Edition). London: Spon Press, 2002: 500-556.
|
|
[37]
|
J. Russias, F. Frizon. Incorporation of aluminum into C-S-H structures: From synthesis to nanostructural characterization. Jour- nal of American Ceramic Society, 2008, 91(7): 2337-2342l.
|
|
[38]
|
P. Mondal, S. P. Sharh and L. Marks. Characterization of cementitious materials at nano scale with a focus on mechanical properties. NSF Workshop on Nanomodification of Cementitious Materials, 2006: 38-44.
|
|
[39]
|
D. Bonen. The nano scale microstructure of the cement paste and its porosity. The 2nd International RILEM Symposium on Advances in Concrete through Science and Engineering. RILEM, 2006: 23-27.
|
|
[40]
|
刘贤萍, 王培铭, 陈红霞等. 原子力显微镜在水泥熟料单矿物早期水化产物研究中的应用[J]. 硅酸盐学报, 2004, 32(3): 327-333.
|
|
[41]
|
T. Yang, E. B. Magyari. AFM investigation of cement paste in humid air at different relative humidities. Journal of Physics D: Applied Physics, 2000, 35(1): 25-28.
|
|
[42]
|
沈卫国, 肖力奇, 马威等. 水化硅酸钙纳米尺度微结构的AFM研究[J]. 硅酸盐学报, 2008, 36(4): 487-493.
|
|
[43]
|
I. G. Richardson. The nature of the hydration products in hardened cement pastes. Cement and Concrete Compos, 2000, 22: 97-133.
|
|
[44]
|
I. G. Richardson, G. W. Groves. The structure of the calcium silicate hydrate phases present in hardened pastes of white Portland cement/blast-furnace slag blends. Journal of Materials Science, 1997, 32(12): 4793-4802.
|
|
[45]
|
M. Vandammea, F. J. Ulm. Nanogranular origin of concrete creep. Proceeding of the National Academy of Science, 2009, 106(26): 10552-10558.
|
|
[46]
|
J. J. Chen, L. Sorelli and F.-J. Ulm. A coupled nanoindenta-tion/ SEM-EDS study on low water/cement ratio portland cement paste: Evidence for C-S-H/Ca(OH)2 Nanocomposites. Journal of American Ceramic Society, 2010, 93(5): 1484-1493.
|