|
[1]
|
Sharma, D., et al. (2018) Biomarkers for Diagnosis of Neonatal Sepsis: A Literature Review. The Journal of Maternal-Fetal & Neonatal Medicine, 31, 1646-1659. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
中华医学会儿科学分会新生儿学组, 中国医师协会新生儿科医师分会感染专业委员会. 新生儿败血症诊断及治疗专家共识(2019年版) [J]. 中华儿科杂志, 2019, 57(4): 252-257.
|
|
[3]
|
Shane, A.L., Sanchez, P.J. and Stoll, B.J. (2017) Neonatal Sepsis. The Lancet, 390, 1770-1780. [Google Scholar] [CrossRef]
|
|
[4]
|
Cantey, J.B. and Lee, J.H. (2021) Biomarkers for the Diagnosis of Neonatal Sepsis. Clinics in Perinatology, 48, 215-227. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Sharma, D., Dasi, T., Murki, S. and Oleti, T.P. (2015) Kluyvera ascorbata Sepsis in an Extremely Low Birth Weight Infant. Indian Journal of Medical Microbiology, 33, 437-439. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Memar, M.Y., Alizadeh, N., Varshochi, M. and Kafil, H.S. (2019) Immunologic Biomarkers for Diagnostic of Early-Onset Neonatal Sepsis. The Journal of Maternal-Fetal & Neonatal Medicine, 32, 143-153. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Chiesa, C., et al. (2003) C-reactive Protein, Interleukin-6, and Procalcitonin in the Immediate Postnatal Period: Influence of Illness Severity, Risk Status, Antenatal and Perinatal Complications, and Infection. Clinical Chemistry, 49, 60-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Fahmey, S.S. and Mostafa, N. (2019) Pentraxin 3 as a Novel Diagnostic Marker in Neonatal Sepsis. Journal of Neonatal-Perinatal Medicine, 12, 437-442. [Google Scholar] [CrossRef]
|
|
[9]
|
Mantovani, A., Garlanda, C., Doni, A. and Bottazzi, B. (2008) Pentraxins in Innate Immunity: From C-Reactive Protein to the Long Pentraxin PTX3. Journal of Clinical Immunology, 28, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Sabry, A., Ibrahim, M. and Khashana, A. (2021) Assessment of Pentraxin 3 in a Systemic Inflammatory Response Occurring with Neonatal Bacterial Infection. Journal of Neonatal-Perinatal Medicine. [Google Scholar] [CrossRef]
|
|
[11]
|
Tunc, T., et al. (2020) Assessment of Novel Biomarkers: sTREM-1, Pentraxin-3 and Pro-Adrenomedullin in the Early Diagnosis of Neonatal Early Onset Sepsis. Journal of Neonatal-Perinatal Medicine, 13, 47-54. [Google Scholar] [CrossRef]
|
|
[12]
|
Hashem, H.E., et al. (2020) The Utility of Neutrophil CD64 and Presepsin as Diagnostic, Prognostic, and Monitoring Biomarkers in Neonatal Sepsis. International Journal of Microbiology, 2020, Article ID: 8814892. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
El-Madbouly, A.A., El Sehemawy, A.A., Eldesoky, N.A., Abd Elgalil, H.M. and Ahmed, A.M. (2019) Utility of Presepsin, Soluble Triggering Receptor Expressed on Myeloid Cells-1, and Neutrophil CD64 for Early Detection of Neonatal Sepsis. Infection and Drug Resistance, 12, 311-319. [Google Scholar] [CrossRef]
|
|
[14]
|
Dilli, D., Oguz, S.S., Dilmen, U., Yavuz Koker, M. and Kızılgun, M. (2010) Predictive Values of Neutrophil CD64 Expression Compared with Interleukin-6 and C-Reactive Protein in Early Diagnosis of Neonatal Sepsis. Journal of Clinical Laboratory Analysis, 24, 363-370. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ng, P.C., Li, K., Wong, R.P., et al. (2002) Neutrophil CD64 Expression: A Sensitive Diagnostic Marker for Late-Onset Nosocomial Infection in Very Low Birthweight Infants. Pediatric Research, 51, 296-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
O’Hare, F.M., et al. (2015) Neutrophil and Monocyte Toll-Like Receptor 4, CD11b and Reactive Oxygen Intermediates, and Neuroimaging Outcomes in Preterm Infants. Pediatric Research, 78, 82-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Weirich, E., et al. (1998) Neutrophil CD11b Expression as a Diagnostic Marker for Early-Onset Neonatal Infection. The Journal of Pediatrics, 132, 445-451. [Google Scholar] [CrossRef]
|
|
[18]
|
Qiu, X., et al. (2019) Is Neutrophil CD11b a Special Marker for the Early Diagnosis of Sepsis in Neonates? A Systematic Review and Meta-Analysis. BMJ Open, 9, e025222. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Rohil, A., et al. (2021) Cell-Surface Biomarkers, C-Reactive Protein and Haematological Parameters for Diagnosing Late Onset Sepsis in Pre-Term Neonates. Journal of Tropical Pediatrics, 67, fmab016. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Tzialla, C., et al. (2018) New Diagnostic Possibilities for Neonatal Sepsis. American Journal of Perinatology, 35, 575-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Degirmencioglu, H., et al. (2019) Presepsin and Fetuin-A Dyad for the Diagnosis of Proven Sepsis in Preterm Neonates. BMC Infectious Diseases, 19, 695. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zheng, Z., et al. (2015) The Accuracy of Presepsin for the Diagnosis of Sepsis from SIRS: A Systematic Review and Meta-Analysis. Annals of Intensive Care, 5, 48. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Poggi, C., Bianconi, T., Gozzini, E., Generoso, M. and Dani, C. (2015) Presepsin for the Detection of Late-Onset Sepsis in Preterm Newborns. Pediatrics, 135, 68-75. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Parri, N., Trippella, G., Lisi, C., De Martino, M., Galli, L. and Chiappini, E. (2019) Accuracy of Presepsin in Neonatal Sepsis: Systematic Review and Meta-Analysis. Expert Review of Anti-Infective Therapy, 17, 223-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Machado, J.R., et al. (2014) Neonatal Sepsis and Inflammatory Mediators. Mediators of Inflammation, 2014, Article ID: 269681. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Chauhan, N., Tiwari, S. and Jain, U. (2017) Potential Biomarkers for Effective Screening of Neonatal Sepsis Infections: An Overview. Microbial Pathogenesis, 107, 234-242. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Froeschle, G.M., et al. (2020) T Cell Cytokines in the Diagnostic of Early-Onset Sepsis. Pediatric Research. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Dreschers, S., Ohl, K., Schulte, N., Tenbrock, K. and Orlikowsky, T.W. (2020) Impaired Functional Capacity of Polarised Neonatal Macrophages. Scientific Reports, 10, Article No. 624. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sherwin, C., et al. (2008) Utility of Interleukin-12 and Interleukin-10 in Comparison with Other Cytokines and Acute-Phase Reactants in the Diagnosis of Neonatal Sepsis. American Journal of Perinatology, 25, 629-636. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wang, Q., et al. (2021) The Value of Interleukin-10 in the Early Diagnosis of Neonatal Sepsis: A Meta-Analysis. Pediatric Critical Care Medicine, 22, e492-e501. [Google Scholar] [CrossRef]
|
|
[31]
|
Dugas, B., et al. (1993) Interleukin-9 Potentiates the Interleukin-4-Induced Immunoglobulin (IgG, IgM and IgE) Production by Normal Human B Lymphocytes. European Journal of Immunology, 23, 1687-1692. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Liu, J., et al. (2015) Association of IL-21 Polymorphisms (rs907715, rs2221903) with Susceptibility to Multiple Autoimmune Diseases: A Meta-Analysis. Autoimmunity, 48, 108-116. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kuchen, S., et al. (2007) Essential Role of IL-21 in B Cell Activation, Expansion, and Plasma Cell Generation during CD4+ T Cell-B Cell Collaboration. The Journal of Immunology, 179, 5886-5896. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Fatmi, A., et al. (2020) miRNA-23b as a Biomarker of Culture-Positive Neonatal Sepsis. Molecular Medicine, 26, 94. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Lin, X. and Wang, Y. (2021) miR-141 Is Negatively Correlated with TLR4 in Neonatal Sepsis and Regulates LPS-Induced Inflammatory Responses in Monocytes. Brazilian Journal of Medical and Biological Research, 54, e10603. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Schuller, S.S., et al. (2017) Pentoxifylline Modulates LPS-Induced Hyperinflammation in Monocytes of Preterm Infants in Vitro. Pediatric Research, 82, 215-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Altuvia, Y., et al. (2005) Clustering and Conservation Patterns of Human microRNAs. Nucleic Acids Research, 33, 2697-2706. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
El-Hefnawy, S.M., et al. (2021) Biochemical and Molecular Study on Serum miRNA-16a and miRNA-451 as Neonatal Sepsis Biomarkers. Biochemistry and Biophysics Reports, 25, Article ID: 100915. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wang, H., et al. (2012) Serum microRNA Signatures Identified by Solexa Sequencing Predict Sepsis Patients’ Mortality: A Prospective Observational Study. PLoS ONE, 7, e38885. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Chen, J., Jiang, S.Y., Cao, Y. and Yang, Y. (2014) Altered miRNAs Expression Profiles and Modulation of Immune Response Genes and Proteins during Neonatal Sepsis. Journal of Clinical Immunology, 34, 340-348. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Fouda, E., et al. (2021) The Diagnostic and Prognostic Role of MiRNA 15b and MiRNA 378a in Neonatal Sepsis. Biochemistry and Biophysics Reports, 26, Article ID: 100988. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Chen, X., et al. (2020) MiR-96-5p Alleviates Inflammatory Responses by Targeting NAMPT and Regulating the NF-kappaB Pathway in Neonatal Sepsis. Bioscience Reports, 40, BSR20201267. [Google Scholar] [CrossRef]
|
|
[43]
|
Cheng, Q., Tang, L. and Wang, Y. (2018) Regulatory Role of miRNA-26a in Neonatal Sepsis. Experimental and Therapeutic Medicine, 16, 4836-4842. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ng, P.C., et al. (2019) Plasma miR-1290 Is a Novel and Specific Biomarker for Early Diagnosis of Necrotizing Enterocolitis-Biomarker Discovery with Prospective Cohort Evaluation. The Journal of Pediatrics, 205, 83-90.e10. [Google Scholar] [CrossRef] [PubMed]
|