|
[1]
|
Suslick, K.S. and Flannigan, D.J. (2008) Inside a Collapsing Bubble: Sonoluminescence and the Conditions during Cav-itation. Annual Review of Physical Chemistry, 59, 659-683. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Flint, E.B. and Suslick, K.S. (1991) The Tem-perature of Cavitation. Science, 253, 1397-1399. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Xu, H., Eddingsaas, N.C. and Suslick, K.S. (2009) Spatial Separation of Cavitating Bubble Populations: The Nanodroplet Injection Model. Journal of the American Chemical Soci-ety, 131, 6060-6061. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Gettle, L.M. and Revzin, M.V. (2020) Innovations in Vascular Ultrasound. Radiologic Clinics of North America, 58, 653-669. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Rajashekharaiah, A.S., Vidya, Y.S., Anantharaju, K.S., Darshan, G.P., Lalitha, P., Sharma, S.C., et al. (2020) Photoluminescence, ther-moluminescence and Photocatalytic Studies of Sonochemical Synthesis of Bi2Zr2O7:Sm3+ Nanomaterials. Journal of Ma-terials Science: Materials in Electronics, 31, 15627-15643. [Google Scholar] [CrossRef]
|
|
[6]
|
Heredia-Rivera, U., Ferrer, I. and Vazquez, E. (2019) Ultrasonic Molding Technology: Recent Advances and Potential Applications in the Medical Industry. Polymers, 11, Article No. 667. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
He, S., et al. (2019) Regulating the Differentiation of PC12 by Acoustic Fluid Stimulation. Proceedings of the IEEE International Ultrasonics Symposium (IUS), Glasgow, ENGLAND, 6-9 October 2019.
|
|
[8]
|
Ouerhani, T., Pflieger, R., Messaoud, W.B. and Nikitenko, S.I. (2015) Spectroscopy of Sono-luminescence and Sonochemistry in Water Saturated with N2-Ar Mixtures. Journal of Physical Chemistry B, 119, 15885-15891. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Riesz, P., Berdahl, D. and Christman, C.L. (1985) Free Radical Generation by Ultrasound in Aqueous and Nonaqueous Solutions. Environmental Health Perspectives, 64, 233-252. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Fuentes-Garcia, J.A., Santoyo-Salzar, J., Rangel-Cortes, E., Goya, G.F., Cardozo-Mata, V. and Pescador-Rojas, J.A. (2021) Effect of Ultrasonic Irradiation Power on Sonochemical Synthesis of Gold Nanoparticles. Ultrasonics Sonochemistry, 70, Article ID: 105274. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Usman, A.I., Aziz, A.A. and Abu Noqta, O. (2019) Green Sonochemical Synthesis of Gold Nanoparticles Using Palm Oil Leaves Extracts. Mater Today: Proceedings, 7, 803-807. [Google Scholar] [CrossRef]
|
|
[12]
|
Yusof, N.S.M. and Ashokkumar, M. (2015) Sonochemical Syn-thesis of Gold Nanoparticles by Using High Intensity Focused Ultrasound. ChemPhysChem, 16, 775-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Okitsu, K., Ashokkumar, M. and Grieser, F. (2005) Sonochemical Synthesis of Gold Nanoparticles: Effects of Ultrasound Frequency. Journal of Physical Chemistry B, 109, 20673-20675. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Bastami, T.R., Ghaedi, A., Mitchell, S.G., Javadian-Saraf, A. and Karimi, M. (2020) Sonochemical Synthesis of Polyoxometalate-Stabilized Gold Nanoparticles for Point-of-Care Determination of Acetaminophen Levels: Preclinical Study in an Animal Model. RSC Advances, 10, 16805-16816. [Google Scholar] [CrossRef]
|
|
[15]
|
Bastami, T.R., Ghaedi, A., Mitchell, S.G., Javadian-Saraf, A. and Karimi, M. (2020) Correction: Sonochemical Synthesis of Polyoxometalate-Stabilized Gold Nanoparticles for Point-of-Care Determination of Acetaminophen Levels: Preclinical Study in an Animal Model. RSC Advances, 10, 18138. [Google Scholar] [CrossRef]
|
|
[16]
|
Dheyab, M.A., Aziz, A.A., Jameel, M.S., Khaniabadi, P.M. and Mehrdel, B. (2021) Sonochemical-Assisted Synthesis of Highly Stable Gold Nanoparticles Catalyst for Decoloration of Methylene Blue Dye. Inorganic Chemistry Communications 127, Article ID: 108551. [Google Scholar] [CrossRef]
|
|
[17]
|
Dheyab, M.A., Aziz, A.A. and Jameel, M.S. (2020) Synthesis and Optimization of the Sonochemical Method for Functionalizing Gold Shell on Fe3O4 Core Nanoparticles Using Re-sponse Surface Methodology. Surfaces and Interfaces, 21, Article ID: 100647. [Google Scholar] [CrossRef]
|
|
[18]
|
Anandan, S., Grieser, F. and Ashokkumar, M. (2008) Sono-chemical Synthesis of Au-Ag Core-Shell Bimetallic Nanoparticles. Journal of Physical Chemistry C, 112, 15102-15105. [Google Scholar] [CrossRef]
|
|
[19]
|
Kanthale, P.M., Brotchie, A., Ashokkumar, M. and Grieser, F. (2008) Ex-perimental and Theoretical Investigations on Sonoluminescence under Dual Frequency Conditions. Ultrasonics Sono-chemistry, 15, 629-635. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Masuda, N., Maruyama, A., Eguchi, T., Hirakawa, T. and Murakami, Y. (2015) Influence of Microbubbles on Free Radical Generation by Ultrasound in Aqueous Solution: De-pendence of Ultrasound Frequency. Journal of Physical Chemistry B, 119, 12887-12893. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Vinodgopal, K., He, Y., Ashokkumar, M. and Grieser, F. (2006) Sonochemically Prepared Platinum-Ruthenium Bimetallic Nanoparticles. Journal of Physical Chemistry B, 110, 3849-3852. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hyeon, T.H., Fang, M.M. and Suslick, K.S. (1996) Nanostructured Molybdenum Carbide: Sonochemical Synthesis and Catalytic Properties. Journal of the American Chem-ical Society, 118, 5492-5493. [Google Scholar] [CrossRef]
|
|
[23]
|
Okitsu, K., Sharyo, K. and Nishimura, R. (2009) One-Pot Synthesis of Gold Nanorods by Ultrasonic Irradiation: The Effect of pH on the Shape of the Gold Na-norods and Nanoparticles. Langmuir, 25, 7786-7790. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhang, J.L., Du, J., Han, B., Liu, Z., Jiang, T. and Zhang, Z. (2006) Sonochemical Formation of Single-Crystalline Gold Nanobelts. Angewandte Chemie International Edition, 45, 1116-1119. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Sanchez-Iglesias, A., Pastoriza-Santos, I., Pérez-Juste, J., Rodríguez-González, B., García de Abajo, F. and Liz-Marzán, L. (2006) Synthesis and Optical Properties of Gold Nanodecahedra with Size Control. Advanced Materials, 18, 2529-2534. [Google Scholar] [CrossRef]
|
|
[26]
|
Jiang, L.P., Xu, S., Zhu, J.-M., Zhang, J.-R., Zhu, J.-J. and Chen, H.-Y. (2004) Ultrasonic-Assisted Synthesis of Monodisperse Single-Crystalline Silver Nanoplates and Gold Nanorings. Inorganic Chemistry, 43, 5877-5883. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Okuyama, K. and Lenggoro, I.W. (2003) Preparation of Nanoparticles via Spray Route. Chemical Engineering Science, 58, 537-547. [Google Scholar] [CrossRef]
|
|
[28]
|
Huang, J.H., Ho, W.K. and Lee, F.S.C. (2012) Facile Syn-thesis of Visible-Light-Activated F-Doped TiO2 Hollow Spheres by Ultrasonic Spray Pyrolysis. Science of Advanced Materials, 4, 863-868. [Google Scholar] [CrossRef]
|
|
[29]
|
Skrabalak, S.E. and Suslick, K.S. (2005) Porous MoS2 Synthesized by Ultrasonic Spray Pyrolysis. Journal of the American Chemical Society, 127, 9990-9991. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Mattmann, M., et al. (2021) Thermoset Shape Memory Polymer Variable Stiffness 4D Robotic Catheters. Advanced Science, Weinheim, Baden-Wurttemberg, Germany, e2103277. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Daud, Y., Lucas, M. and Huang, Z.H. (2007) Modelling the Effects of Superimposed Ultrasonic Vibrations on Tension and Compression Tests of Aluminium. Journal of Materials Pro-cessing Technology, 186, 179-190. [Google Scholar] [CrossRef]
|
|
[32]
|
Giboz, J., Copponnex, T. and Mele, P. (2007) Microinjec-tion Molding of Thermoplastic Polymers: A Review. Journal of Micromechanics and Microengineering, 17, R96-R109. [Google Scholar] [CrossRef]
|
|
[33]
|
Zeng, K., Wu, X.-Y., Liang, X., Xu, B., Wang, Y.-T., Chen, X.-Q., et al. (2014) Process and Properties of Micro-Ultrasonic Powder Molding with Polypropylene. The International Journal of Advanced Manufacturing Technology, 70, 515-522. [Google Scholar] [CrossRef]
|
|
[34]
|
Liang, X., Wu, X., Xu, B., Ma, J., Liu, Z., Peng, T. and Fu, L. (2016) Phase Structure Development as Preheating UHMWPE Powder Temperature Changes in the Micro-UPM Pro-cess. Journal of Micromechanics and Microengineering, 26, Article ID: 015014. [Google Scholar] [CrossRef]
|
|
[35]
|
Liang, X., Li, B., Wu, X., Shi, H., Zeng, K. and Wang, Y. (2013) Micro UHMW-PE Column Array Molded by the Utilization of PCB as Mold Insert. Circuit World, 39, 95-101. [Google Scholar] [CrossRef]
|
|
[36]
|
Kellomaki, M. and Tormala, P. (1997) Ultrasonic Moulding of Bioabsorbable Polymers and Polymer/Drug Composites. Journal of Materials Science Letters, 16, 1786-1789. [Google Scholar] [CrossRef]
|
|
[37]
|
Grabalosa, J., Ferrer, I., Martínez-Romero, O., Elías-Zúñiga, A., Plantá, X. and Rivillas, F. (2016) Assessing a Stepped Sonotrode in Ultrasonic Molding Technology. Journal of Materi-als Processing Technology, 229, 687-696. [Google Scholar] [CrossRef]
|
|
[38]
|
Masato, D., Babenko, M., Shriky, B., Gough, T., Lucchetta, G. and Whiteside, B. (2018) Comparison of Crystallization Characteristics and Mechanical Properties of Polypropylene Processed by Ultrasound and Conventional Micro-Injection Molding. The International Journal of Advanced Manufac-turing Technology, 99, 113-125. [Google Scholar] [CrossRef]
|
|
[39]
|
Garvin, K.A. and VanderBurgh, J. (2013) Controlling Collagen Fiber Microstructure in Three-Dimensional Hydrogels Using Ultrasound. Journal of the Acoustical Society of America, 134, 1491-1502. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Garvin, K.A. and Dalecki, D.(2013) Spatial Patterning of Endothelial Cells and Vascular Network Formation Using Ultrasound Standing Wave Fields. Journal of the Acoustical Society of America, 134, 1483-1490. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Chen, J.C., Su, C.-M., Chen, G.-S., Lai, C.-C., Chen, C.-Y., Lin, K.M.-C., et al. (2020) Enhancement of Neurite Outgrowth by Warming Biomaterial Ultrasound Treatment. International Journal of Molecular Sciences, 21, Article No. 2236. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Bai, W.-K., Shen, E. and Hu, B. (2012) Induction of the Apoptosis of Cancer Cell by Sonodynamic Therapy: A Review. Chinese Journal of Cancer Research, 24, 368-373. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Luo, H., Li, J., Lin, Q., Xiao, X., Shi, Y., Ye, X., et al. (2020) Ultrasonic Irradiation and SonoVue Microbubbles-Mediated RNA Interference Targeting PRR11 Inhibits Breast Cancer Cells Proliferation and Metastasis, but Promotes Apoptosis. Bioscience Reports, 40, Article ID: BSR20201854. [Google Scholar] [CrossRef]
|