|
[1]
|
Rollig, C., Knop, S. and Bornhauser, M. (2015) Multiple Myoloma. Lancet, 385, 2197-2208. [Google Scholar] [CrossRef]
|
|
[2]
|
Dhakal, B., Szabo, A., Chhabra, S., Hamadani, M., D’Souza, A., Usmani, S.Z., et al. (2018) Autologous Transplantation for Newly Diagnosed Multiple Myeloma in the Era of Novel Agent Induction: A Systematic Review and Meta-Analysis. JAMA Oncology, 4, 343-350. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Mateos, M.V., Goldschmidt, H., San-Miguel, J., Mikhael, J., DeCosta, L., Zhou, L., et al. (2018) Carfilzomib in Relapsed or Refractory multiple Myeloma Patients with Early or Late Relapse Following Prior Therapy: A Subgroup Analysis of the Randomized Phase 3 ASPIRE and ENDEA VOR Trials. Hematological oncology, 36, 463-470. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Krishnan, A., Kapoor, P., Palmer, J.M., Tsai, N.-C., Kumar, S., Lonial, S., et al. (2018) Phase I/II Trial of the Oral Regimen Ixazomib, Pomalidomide, and Dexamethasone in Relapsed/Refractory multiple Myeloma. Leukemia, 32, 1567-1574. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Anderson, K.C. (2016) Progress and Paradigms in Multiple Myeloma. Clinical Cancer Research, 22, 5419-5427. [Google Scholar] [CrossRef]
|
|
[6]
|
Grupp, S.A., Kalos, M., Barrett, D., Aplenc, R., Porter, D.L., Rheingold, S.R., Teachey, D.T., et al. (2013) Chimeric Antigen Receptor—Modified T Cells for Acute Lymphoid Leukemia. New England Journal of Medicine, 368, 1509-1518. [Google Scholar] [CrossRef]
|
|
[7]
|
Porter, D.L., Levine, B.L., Kalos, M., Bagg, A. and June, C.H. (2011) Chimeric Antigen Receptor—Modified T Cells for Acute Lymphoid Leukemia. New England Journal of Medicine d, 365, 725-733. [Google Scholar] [CrossRef]
|
|
[8]
|
Rasche, L., Chavan, S.S., Stephens, O.W., Patel, P.H., Tytarenko, R., Ashby, C., et al. (2017) Spatial Genomic Heterogeneity in Multiple Myeloma Revealed by Multi-Region Sequencing. Nature Communications, 8, Article No. 268. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zeisberg, M. and Neilson, E.G. (2009) Biomarkers for Epithelial-Mesenchymal Transitions. Journal of Clinical Investigation, 119, 1429-1437. [Google Scholar] [CrossRef]
|
|
[10]
|
Wang, Q., Li, H., Sun, Z., Dong, L., Gao, L., Liu, C., et al. (2016) Kukoamine A Inhibits Human Glioblastoma Cell Growth and Migration through Apoptosis Induction and Epithelial-Mesenchymal Transition Attenuation. Scientific Reports, 6, Article No. 36543. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wang, N., He, Y.L., Pang, L.J., Zou, H., Liu, C.-X., Zhao, J., et al. (2015) Down-Regulated E-Cadherin Expression Is Associated with Poor Five-Year Overall Survival in Bone and Soft Tissue Sarcoma: Results of a Meta-Analysis. PLoS ONE, 10, Article ID: e0121448. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Shi, X., Ying, L., Zhou, X., et al. (2016) Downregulation of Metadherin Inhibits the Invasiveness of Diffuse Large B Cell Lymphoma. International Journal of Clinical and Experimental Pathology, 9, 8112-8121.
|
|
[13]
|
Stavropoulou, V., Kaspar, S., Brault, L., Sanders, M.A., Juge, S, Morettini, S., et al. (2016) MLL-AF9 Expression in Hematopoietic Stem Cells Drives a Highly Invasive AML Expressing EMT-Related Genes Linked to Poor Outcome. Cancer Cell, 30, 43-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Kahlert, U.D., Joseph, J.V. and Kruyt, F.A.E. (2017) EMT- and MET-Related Processes in Nonepithelial Tumors: Importance for Disease Progression, Prognosis, and Therapeutic Opportunities. Molecular Oncology, 11, 860-877. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Azab, A.K., Hu, J., Quang, P., Azab, F., Pitsillides, C., Awwad, R., et al. (2012) Hypoxia Promotes Dissemination of Multiple Myeloma through Acquisition of Epithelial to Mesenchymal Transition-Like Features. Blood, 119, 5782-5794. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yang, J., Lian, W., Sun, L., Qi, D., Ding, Y. and Zhang, X.-H. (2016) High Nuclear Expression of Twist1 in the Skeletal Extramedullary Disease of Myeloma Patients Predicts Inferior Survival. Pathology—Research and Practice, 212, 210-216. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Roccaro, A.M., Mishima, Y., Sacco, A., Moschetta, M., Tai, Y.-T., Shi, J., et al. (2015) CXCR4 Regulates Extra-Medullary Myeloma through Epithelial-Mesenchymal-Transition-Like Transcriptional Activation. Cell Report, 12, 622-635. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lv, C., Dai, H., Sun, M., Zhao, H., Wu, K., Zhu, J., et al. (2017) Mesenchymal Stem Cells Induce Epithelial Mesenchymal Transition in Melanoma by Paracrine Secretion of Transforming Growth Factor-β. Melanoma Research, 27, 74-84. [Google Scholar] [CrossRef]
|
|
[19]
|
Nishimura, K., Semba, S., Aoyagi, K., Sasaki H. and Yokozaki, H. (2012) Mesenchymal Stem Cells Provide an Advantageous Tumor Microenvironment for the Restoration of Cancer Stem Cells. Pathobiology, 79, 290-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ibraheem, A., Attar-Schneider, O., Dabbah, M., Jarchowsky, O.D., Matalon, S.T., Lishner, M., et al. (2019) BM-MSCs-Derived ECM Modifies Multiple Myeloma Phenotype and Drug Response in a Source-Dependent Manner. Translational Research, 207, 83-95. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhou, Y. (2019) Study the Effects of BM-MSCs-Derived Exosomes on EMT-Like Phenotype, Stemness and Invasion of Myeloma Cells. Master’s Thesis, Tianjin Medical University, Tianjin.
|
|
[22]
|
Huang, Z., Liang, X., Wu, W., Chen, X., Zeng, Q., Yang, M., et al. (2019) Mechanisms Underlying the Increased Chemosensitivity of Bortezomib-Resistant Multiple Myeloma by Silencing Nuclear Transcription Factor Snail1. Oncology Reports, 41, 415-426. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
DeCraene, B. and Berx, G. (2013) Regulatory Networks Defining EMT during Cancer Initiation and Progression. Nature Reviews Cancer, 13, 97-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Michela, F. and Giovanni, T. (2020) WNT Signaling in Hematological Malignancies. Frontiers in Oncology, 10, Article ID: 615190. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Derksen, P.W., Tjin, E., Meijer, H.P., Klok, M.D., Mac Gillavry, H.D., van Oers, M.H.J., et al. (2004) Illegitimate WNT Signaling Promotes Proliferation of Multiple Myeloma Cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 6122-6127. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Baron, R. and Kneissel, M. (2013) WNT Signaling in Bone Homeostasis and Disease: From Human Mutations to Treatments. Nature Medicin, 19, 179-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Huang, H.J., Zhou, L.L., Fu, W.J., et al. (2015) β-Catenin SUMOylation is Involved in the Dysregulated Proliferation of Myeloma Cells. American Journal of Cancer Research, 5, 309-320.
|
|
[28]
|
Driscoll, J.J., Pelluru, D., Lefkimmiatis, K., Fulciniti, M., Prabhala, R.H., Greipp, P.R., et al. (2010) The Sumoylation Pathway Is Dysregulated in Multiple Myeloma and is Associated with Adverse Patient Outcome. Blood, 115, 2827-2834. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Bjorklund, C.C., Ma, W., Wang, Z.Q., Eric Davis, R., Kuhn, D.J., Kornblau, S.M., et al. (2011) Evidence of a Role for Activation of Wnt/Beta-Catenin Signaling in the Resistance of Plasma Cells to Lenalidomide. Journal of Biological Chemistrym, 286, 11009-11020. [Google Scholar] [CrossRef]
|
|
[30]
|
Bjorklund, C.C., Baladandayuthapani, V., Lin, H.Y., Jones, R.J., Kuiatse, I., Wang, H., et al. (2014) Evidence of a Role for CD44 and Cell Adhesion in Mediating Resistance to Lenalidomide in Multiple Myeloma: Therapeutic Implications. Leukemia, 28, 373-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Valenta, T., Hausmann, G. and Basler, K. (2012) The Many Faces and Functions of β-Catenin. The EMBO Journal, 31, 2714-2736. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ma Y., Zhang, P., Zhang, Q., Wang, X., Miao, Q., Lyu, X., et al. (2021) Dihydroartemisinin Suppresses Proliferation, Migration, the Wnt/β-Catenin Pathway and EMT via TNKS in Gastric Cancer. Oncology Letters, 22, Article No. 688. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Jin, X., Yin, J., Zhu, H., Li, W., Yu, K., Liu, M., et al. (2021) SMG9 Serves as an Oncogene to Promote the Tumor Progression via EMT and Wnt/β-Catenin Signaling Pathway in Hepatocellular Carcinoma. Frontiers in Pharmacology, 12, Article ID: 701451. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Liu, W., Fu, X. and Li, R. (2021) CNN1 Regulates the DKK1/Wnt/βcatenin/cmyc Signaling Pathway by Activating TIMP2 to Inhibit the Invasion, Migration and EMT of Lung Squamous Cell Carcinoma Cells. Experimental and Therapeutic Medicine, 22, Article No. 855. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Guo, B., Xiao, C., Liu, Y., Zhang, N., Bai, H., Yang, T., et al. (2021) MiR-744-5p Inhibits Multiple Myeloma Proliferation, Epithelial Mesenchymal Transformation and Glycolysis by Targeting SOX12/Wnt/β-Catenin Signaling. OncoTargets and Therapy, 14, 1161-1172. [Google Scholar] [CrossRef]
|