|
[1]
|
Stein, D.M., Feather, C.B. and Napolitano, L.M. (2017) Traumatic Brain Injury Advances. Critical Care Clinics, 33, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Dixon, K.J. (2017) Pathophysiology of Traumatic Brain Injury. Physical Medicine & Rehabilitation Clinics of North America, 28, 215-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Jiang, J.Y., Gao, G.Y., Feng, J.F., Mao, Q., Chen, L.G., Yang, X.F., et al. (2019) Traumatic Brain Injury in China. The Lancet Neurology, 18, 286-295. [Google Scholar] [CrossRef]
|
|
[4]
|
Maas, A.I.R., Menon, D.K., Adelson, P.D., Andelic, N., Bell, M.J., Belli, A., et al. (2017) Traumatic Brain Injury: Integrated Approaches to Improve Prevention, Clinical Care, and Research. Lancet Neurology, 16, 987-1048. [Google Scholar] [CrossRef]
|
|
[5]
|
Liu, M., Chi, Z., Liu, W., Luo, P., Zhang, L., Wang, Y., et al. (2015) A Novel Rat Model of Blast-Induced Traumatic Brain Injury Simulating Different Damage Degree: Implications for Morphological, Neurological, and Biomarker Changes. Frontiers in Cellular Neuroscience, 9, Article No. 168. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Topolovec-Vranic, J., Pollmann-Mudryj, M.A., Ouchterlony, D., Klein, D., Spence, J., Romaschin, A., et al. (2011) The Value of Serum Biomarkers in Prediction Models of Outcome after Mild Traumatic Brain Injury. Journal of Trauma & Acute Care Surgery, 71, S478-S486. [Google Scholar] [CrossRef]
|
|
[7]
|
Berger, P.R. (2006) The Use of Serum Biomarkers to Predict Outcome after Traumatic Brain Injury in Adults and Children. Journal of Head Trauma Rehabilitation, 21, 315-333. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Buonora, J.E., Yarnell, A.M., Lazarus, R.C., Mousseau, M., Latour, L.L., Rizoli, S.B., et al. (2015) Multivariate Analysis of Traumatic Brain Injury: Development of an Assessment Score. Frontiers in Neurology, 6, Article No. 68. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Papa, L., Lewis, L.M., Silvestri, S., Falk, J.L., Giordano, P., Brophy, G.M., et al. (2012) Serum Levels of Ubiquitin C-Terminal Hydrolase Distinguish Mild Traumatic Brain Injury from Trauma Controls and Are Elevated in Mild and Moderate Traumatic Brain Injury Patients with Intracranial Lesions and Neurosurgical Intervention. The Journal of Trauma and Acute Care Surgery, 72, 1335-1344. [Google Scholar] [CrossRef]
|
|
[10]
|
Mondello, S., Linnet, A., Buki, A., Robicsek, S., Gabrielli, A., Tepas, J., et al. (2012) Clinical Utility of Serum Levels of Ubiquitin C-Terminal Hydrolase as a Biomarker for Severe Traumatic Brain Injury. Neurosurgery, 70, 666-675. [Google Scholar] [CrossRef]
|
|
[11]
|
Li, J., Yu, C., Sun, Y. and Li, Y. (2015) Serum Ubiquitin C-Terminal Hydrolase L1 as a Biomarker for Traumatic Brain Injury: A Systematic Review and Meta-Analysis. The American Journal of Emergency Medicine, 33, 1191-1196. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Takala, R., Posti, J.P., Runtti, H., Newcombe, V.F., Outtrim, J., Katila, A.J., et al. (2016) Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase-L1 as Outcome Predictors in Traumatic Brain Injury. World Neurosurgery, 87, 8-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Frankel, M., Fan, L.Q., et al. (2019) Association of Very Early Serum Levels of S100B, Glial Fibrillary Acidic Protein, Ubiquitin C-Terminal Hydrolase-L1, and Spectrin Breakdown Product with Outcome in ProTECT III. Journal of Neurotrauma, 36, 2863-2871. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Di Battista, A.P., Buonora, J.E., Rhind, S.G., Hutchison, M.G., Baker, A.J., Rizoli, S.B., et al. (2015) Blood Biomarkers in Moderate-To-Severe Traumatic Brain Injury:Potential Utility of a Multi-Marker Approach in Characterizing Outcome. Frontiers in Neurology, 6, Article No. 110. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Egea-Guerrero, J.J., Murillo-Cabezas, F., Gordillo-Escobar, E., Rodríguez-Rodríguez, A., Enamorado-Enamorado, J., Revuelto-Rey, J., et al. (2013) S100B Protein May Detect Brain Death Development after Severe Traumatic Brain Injury. Journal of Neurotrauma, 30, 1762-1769. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Rainey, T., Lesko, M., Sacho, R., Lecky, F. and Childs, C. (2009) Predicting Outcome after Severe Traumatic Brain Injury Using the Serum S100B Biomarker: Results Using a Single (24h) Time-Point. Resuscitation, 80, 341-345. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Thelin, E.P., Nelson, D.W., Bellander, B.M. (2017) A Review of the Clinical Utility of Serum S100B Protein Levels in the Assessment of Traumatic Brain Injury. Acta Neurochirurgica, 159, 209-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Bouvier, D., Balayssac, D., Durif, J., Mourgues, C., Sarret, C., Pereira, B., et al. (2019) Assessment of the Advantage of the Serum S100B Protein Biomonitoring in the Management of Paediatric Mild Traumatic Brain Injury—PROS100B: Protocol of a Multicentre Unblinded Stepped Wedge Cluster Randomised Trial. BMJ Open, 9, Article ID: e027365. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Thelin, E.P., Jeppsson, E., Frostell, A., Svensson, M., Mondello, S., Bellander, B.M., et al. (2016) Utility of Neuron-Specific Enolase in Traumatic Brain Injury; Relations to S100B Levels, Outcome, and Extracranial Injury Severity. Critical Care, 20, Article No. 285. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lei, J., Gao, G., Feng, J., Jin, Y., Wang, C., Mao, Q., et al. (2015) Glial Fibrillary Acidic Protein as a Biomarker in Severe Traumatic Brain Injury Patients: A Prospective Cohort Study. Critical Care, 19, Article No. 362. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Czeiter, E., Mondello, S., Kovacs, N., Sandor, J., Gabrielli, A., Schmid, K., et al. (2012) Brain Injury Biomarkers May Improve the Predictive Power of the Impact Outcome Calculator. Journal of Neurotrauma, 29, 1770-1778. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Gao, J. and Zheng, Z. (2016) Development of Prognostic Models for Patients with Traumatic Brain Injury: A Systematic Review. International Journal of Clinical and Experimental Medicine, 8, 19881-19885.
|
|
[23]
|
Shemilt, M., Boutin, A., Lauzier, F., Zarychanski, R., Moore, L., McIntyre, L.A., et al. (2019) Prognostic Value of Glial Fibrillary Acidic Protein in Patients with Moderate and Severe Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Critical Care Medicine, 47, e522-e529. [Google Scholar] [CrossRef]
|
|
[24]
|
Mcmahon, P.J, Panczykowski, D., Yue, J.K., Puccio, A.M., Inoue, T., Sorani, M.D., et al. (2014) Measurement of the GFAP-BDP Biomarker for the Detection of Traumatic Brain Injury Compared to CT and MRI. Journal of Neurotrauma, 32, 527-533. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Vartanian, M.G., Cordon, J.J., Kupina, N.C., Schielke, G.P., Posner, A., Raser, K.J., et al. (1996) Phenytoin Pretreatment Prevents Hypoxic-Ischemic Brain Damage in Neonatal Rats. Brain Research Developmental Brain Research, 95, 169-175. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Korley, F.K., Nikolian, V.C., Williams, A.M., Dennahy, I.S., Weykamp, M. and Alam, H.B. (2018) Valproic Acid Treatment Decreases Serum Glial Fibrillary Acidic Protein and Neurofilament Light Chain Levels in Swine Subjected to Traumatic Brain Injury. Journal of Neurotrauma, 35, 1185-1191. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Žurek, J. and Fedora, M. (2012) The Usefulness of S100B, NSE, GFAP, NF-H, Secretagogin and Hsp70 as a Predictive Biomarker of Outcome in Children with Traumatic Brain Injury. Acta Neurochirurgica, 154, 93-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Rakhit, S., Nordness, M.F., Lombardo, S.R., Cook, M., Smith, L. and Patel, M.B. (2020) Management and Challenges of Severe Traumatic Brain Injury. Seminars in Respiratory and Critical Care Medicine, 42, 127-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Ottens, A.K., Golden, E.C., Bustamante, L., Hayes, R.L., Denslow, N.D. and Wang, K.K.W. (2010) Proteolysis of Multiple Myelin Basic Protein Isoforms after Neurotrauma: Characterization by Mass Spectrometry. Journal of Neurochemistry, 104, 1404-1414. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Liu, M.C., Akle, V., Zheng, W., Kitlen, J., O’Steen, B., Larner, S.F., et al. (2006) Extensive Degradation of Myelin Basic Protein Isoforms by Calpain Following Traumatic Brain Injury. Journal of Neurochemistry, 98, 700-712. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Rose-John, S. (2012) IL-6 Trans-Signaling via the Soluble IL-6 Receptor: Importance for the Pro-Inflammatory Activities of IL-6. International Journal of Biological Sciences, 8, 1237-1247. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Santarsieri, M., Kumar, R.G., Kochanek, P.M., Berga, S. and Wagner, A.K. (2015) Variable Neuroendocrine-Immune Dysfunction in Individuals with Unfavorable Outcome after Severe Traumatic Brain Injury. Brain, Behavior, and Immunity, 45, 15-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Olivecrona, Z., Dahlqvist, P. and Koskinen, L. (2013) Acute Neuro-Endocrine Profile and Prediction of Outcome after Severe Brain Injury. Scandinavian Journal of Trauma Resuscitation & Emergency Medicine, 21, Article No. 33. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Donegan, J.J., Girotti, M., Weinberg, M.S. and Morilak, D.A. (2014) A Novel Role for Brain Interleukin-6: Facilitation of Cognitive Flexibility in Rat Orbitofrontal Cortex. Journal of Neuroscience, 34, 953-962. [Google Scholar] [CrossRef]
|
|
[35]
|
Kushi, H., Saito, T., Makino, K. and Hayashi, N. (2003) L-8 Is a Key Mediator of Neuroinflammation in Severe Traumatic Brain Injuries. In: Kuroiwa, T., et al., Eds., Brain Edema XII, Vol. 86, Springer, Vienna, 347-350. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Garcia, J.M., Stillings, S.A., Leclerc, J.L., Phillips, H., Edwards, N.J., Robicsek, S.A., et al. (2017) Role of Interleukin-10 in Acute Brain Injuries. Frontiers in Neurology, 8, Article No. 244. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Montgomery, S.L. and Bowers, W.J. (2011) Tumor Necrosis Factor-alpha and the Roles It Plays in Homeostatic and Degenerative Processes within the Central Nervous System. Journal of Neuroimmune Pharmacology, 7, 42-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zwirner, J., Lier, J., Franke, H., Hammer, N., Matschke, J., Trautz, F., et al. (2021) GFAP Positivity in Neurons Following Traumatic Brain Injuries. International Journal of Legal Medicine, 135, 2323-2333. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ilzecki, M., Przywara, S., Ilzecka, J., Grabarska, A., Terlecki, P., Stepulak, A., et al. (2016) Serum Microtubule Associated Protein Tau and Myelin Basic Protein as the Potential Markers of Brain Ischaemia-Reperfusion Injury in Patients Undergoing Carotid Endarterectomy. Acta Angiologica, 22, 37-43. [Google Scholar] [CrossRef]
|
|
[40]
|
Saw, M.M., Chamberlain, J., Barr, M., Morgan, M.P., Burnett, J.R. and Ho, K.M. (2014) Differential Disruption of Blood-Brain Barrier in Severe Traumatic Brain Injury. Neurocritical Care, 20, 209-216. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Man, J.P., Wen, Y.L., Ahn, Y.H., Lee, P.H., Choi, S., Kim, K.R., et al. (2009) The Free Fatty Acid Metabolome in Cerebral Ischemia Following Human Mesenchymal Stem Cell Transplantation in Rats. Clinica Chimica Acta, 402, 25-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Orešič, M., Posti, J.P., Kamstrup-Nielsen, M.H., Takala, R.S.K., Lingsma, H.F., Mattila, I., et al. (2016) Human Serum Metabolites Associate with Severity and Patient Outcomes in Traumatic Brain Injury. EBioMedicine, 12, 118-126. [Google Scholar] [CrossRef] [PubMed]
|