|
[1]
|
Hemphill, J.C., Greenberg, S.M., Anderson, C.S., Becker, K., Bendok, B.R., Cushman, M., et al. (2015) Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 46, 2032-2060. [Google Scholar] [CrossRef]
|
|
[2]
|
Barzó, P., Marmarou, A., Fatouros, P., et al. (1996) Magnetic Resonance Imaging-Monitored Acute Blood-Brain Barrier Changes in Experimental Traumatic Brain Injury. Journal of Neurosurgery, 85, 1113-1121. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Keep, R.F., Hua, Y. and Xi, G. (2012) Intracerebral Haemorrhage: Mechanisms of Injury and Therapeutic Targets. The Lancet Neurology, 11, 720-731. [Google Scholar] [CrossRef]
|
|
[4]
|
Ma, M.W., Wang, J., Dhandapani, K.M., et al. (2018) Deletion of NADPH Oxidase 4 Reduces Severity of Traumatic Brain Injury. Free Radical Biology & Medicine, 117, 66-75. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Rani, V., Deep, G., Singh, R.K., et al. (2016) Oxidative Stress and Metabolic Disorders: Pathogenesis and Therapeutic Strategies. Life Sciences, 148, 183-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Lin, X., Ye, H., Siaw-Debrah, F., et al. (2018) AC-YVAD-CMK Inhibits Pyroptosis and Improves Functional Outcome after Intracerebral Hemorrhage. BioMed Research International, 2018, Article ID: 3706047. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Li, H., Mittal, A., Makonchuk, D.Y., Bhatnagar, S. and Kumar, A. (2009) Matrix Metalloproteinase-9 Inhibition Ameliorates Pathogenesis and Improves Skeletal Muscle Regeneration in Muscular Dystrophy. Human Molecular Genetics, 18, 2584-2598. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Shang, Z.J., Ethunandan, M., Gorecki, D.C. and Brennan, P.A. (2008) Aberrant Expression of Beta-Dystroglycan May Be Due to Processing by Matrix Metalloproteinases-2 and -9 in Oral Squamous Cell Carcinoma. Oral Oncology, 44, 1139-1146. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Hawkins, B.T., Gu, Y.H., Izawa, Y. and Del Zoppo, G.J. (2013) Disruption of Dystroglycan-Laminin Interactions Modulates Water Uptake by Astrocytes. Brain Research, 1503, 89-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, X. and Lo, E.H. (2003) Triggers and Mediators of Hemorrhagic Transformation in Cerebral Ischemia. Molecular Neurobiology, 28, 229-244. [Google Scholar] [CrossRef]
|
|
[11]
|
Cunningham, L.A., Wetzel, M. and Rosenberg, G.A. (2005) Multiple Roles for MMPs and TIMPs in Cerebral Ischemia. Glia, 50, 329-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Rosenberg, G.A. and Yang, Y. (2007) Vasogenic Edema Due to Tight Junction Disruption by Matrix Metalloproteinases in Cerebral Ischemia. Neurosurgical Focus, 22, E4. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Rosenberg, G.A., Estrada, E. and Dencoff, J.E. (1998) Matrix Metalloproteinases and TIMPs Are Associated with Blood-Brain Barrier Opening after Reperfusion in Rat Brain. Stroke, 29, 2189-2195. [Google Scholar] [CrossRef]
|
|
[14]
|
Petrovska-Cvetkovska, D., Dolnenec-Baneva, N., Nikodijevik, D. and Cheprega nova-Changovska, T. (2014) Correlative Study between Serum Matrix Metalloproteinase-9 Values and Neurologic Deficit in Acute, Primary, Supratentorial, Intracerebral Haemorrhage. Pril (Makedon Akad Nauk Umet Odd Med Nauki), 35, 39-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Xue, M., Hollenberg, M.D. and Yong, V.W. (2006) Combination of Thrombin and Matrix Metallo Proteinase-9 Exacerbates Neurotoxicity in Cell Culture and Intracerebral Hemorrhage in Mice. Journal of Neuroscience, 26, 10281-10291. [Google Scholar] [CrossRef]
|
|
[16]
|
Ramos-Fernandez, M., Bellolio, M.F. and Stead, L.G. (2011) Matrix Metalloproteinase-9 as a Marker for Acute Ischemic Stroke: A Systematic Review. Journal of Stroke and Cerebrovascular Diseases, 20, 47-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhang, X., Gu, Y., Li, P., et al. (2019) Matrix Metalloproteases-Mediated Cleavage on β-Dystroglycan May Play a Key Role in the Blood-Brain Barrier after Intracerebral Hemorrhage in Rats. Medical Science Monitor, 25, 794-800. [Google Scholar] [CrossRef]
|
|
[18]
|
Brown, G.C. and Borutaite, V. (2012) There Is No Evidence That Mitochondria Are the Main Source of Reactive Oxygen Species in Mammalian Cells. Mitochondrion, 12, 1-4. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Haslund-Vinding, J., McBean, G., Jaquet, V., et al. (2017) NADPH Oxidases in Oxidant Production by Microglia: Activating Receptors, Pharmacology and Association with Disease. British Journal of Pharmacology, 174, 1733-1749. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sedeek, M., Nasrallah, R., Touyz, R.M., et al. (2013) NADPH Oxidases, Reactive Oxygen Species, and the Kidney: Friend and Foe. Journal of the American Society of Nephrology, 24, 1512-1518. [Google Scholar] [CrossRef]
|
|
[21]
|
Chien, C.T., Lee, P.H., Chen, C.F., et al. (2001) De Novo Demonstration and Co-Localization of Free-Radical Production and Apoptosis Formation in Rat Kidney Subjected to Ischemia/Reperfusion. Journal of the American Society of Nephrology, 12, 973-982. [Google Scholar] [CrossRef]
|
|
[22]
|
Li, H., Zhuang, H.L., Lin, J.J., et al. (2018) Effect of Rosmarinic Acid from Sarcandra glabra in Inhibiting Proliferation and Migration and Inducing Apoptosis of MDA-MB-231 Cells via Regulation of Expressions of Bcl-2 and Bax. China Journal of Chinese Materia Medica, 43, 3335-3340.
|
|
[23]
|
Xie, J., Hong, E., Ding, B., et al. (2020) Inhibition of NOX4/ROS Suppresses Neuronal and Blood-Brain Barrier Injury by Attenuating Oxidative Stress after Intracerebral Hemorrhage. Frontiers in Cellular Neuroscience, 14, Article ID: 578060. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Duan, Z., Li, H., Qi, X., et al. (2019) Crocin Attenuation of Neurological Deficits in a Mouse Model of Intracerebral Hemorrhage. Brain Research Bulletin, 150, 186-195.
|
|
[25]
|
Matsushima, S., Tsutsui, H. and Sadoshima, J. (2014) Physiological and Pathological Functions of NADPH Oxidases during Myocardial Ischemia-Reperfusion. Trends in Cardiovascular Medicine, 24, 202-205. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Altermann, C.D.C., Souza, M.A., Schimidt, H.L., et al. (2017) Short-Term Green Tea Supplementation Prevents Recognition Memory Deficits and Ameliorates Hippocampal Oxidative Stress Induced by Different Stroke Models in Rats. Brain Research Bulletin, 131, 78-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Qu, J., Chen, W., Hu, R. and Feng, H. (2016) The Injury and Therapy of Reactive Oxygen Species in Intracerebral Hemorrhage Looking at Mitochondria. Oxidative Medicine and Cellular Longevity, 2016, Article ID: 2592935. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhou, F., Liu, Y., Yang, B. and Hu, Z. (2018) Neuroprotective Potential of Glibenclamide Is Mediated by Antioxidant and Anti-Apoptotic Pathways in Intracerebral Hemorrhage. Brain Research Bulletin, 142, 18-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Choi, K.S., Kim, H.J., Do, S.H., et al. (2018) Neuroprotective Effects of Hydrogen Inhalation in an Experimental Rat Intracerebral Hemorrhage Model. Brain Research Bulletin, 142, 122-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Khan, N. and Swartz, H. (2002) Measurements in Vivo of Parameters Pertinent to ROS/RNS Using EPR Spectroscopy. Molecular and Cellular Biochemistry, 234-235, 341-357. [Google Scholar] [CrossRef]
|
|
[31]
|
Mo, J., He, L., Ma, B., et al. (2016) Tailoring Particle Size of Mesoporous Silica Nanosystem to Antagonize Glioblastoma and Overcome Blood-Brain Barrier. ACS Applied Materials & Interfaces, 8, 6811-6825. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Peng, C., Duan, S. and Gang, L. (2018) Efficacy of Danhong Injection on Serum Concentration of TNF-α, IL-6 and NF-κB in Rats with Intracerebral Hemorrhage. Open Life Science, 13, 77-81. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hong, S.-L., Dong, G., Ai, L.-G., et al. (2014) Human Amniotic Epithelial Stem Cells Inhibit Microglia Activation through Downregulation of Tumor Necrosis Factor-a, Interleukin-1b and Matrix Metalloproteinase-12 in Vitro and in a Rat Model of Intracerebral Hemorrhage. Cytotherapy, 16, 523-534. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Chen, A.-Q., Fang, Z., Chen, X.-L., et al. (2019) Microglia-Derived TNF-α Mediates Endothelial Necroptosis Aggravating Blood Brain-Barrier Disruption after Ischemic Stroke. Cell Death & Disease, 10, 487. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhang, X.M., Li, X.L., Tang, S.H. and Liu, Q.C. (2006) Effect of Head Hypothermia on Serum Inflammatory Cytokines Levels Inpatients with Hypertensive Intracerebral Hemorrhage. Chinese Critical Care Medicine, 18, 294-296.
|
|
[36]
|
Rosell, A., Vilalta, A., García-Berrocoso, T., et al. (2011) Brain Perihematoma Genomic Profile Following Spontaneous Human Intracerebral Hemorrhage. PLoS ONE, 6, e16750. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Behrouz, R. (2016) Re-Exploring Tumor Necrosis Factor Alpha as a Target for Therapy in Intracerebral Hemorrhage. Translational Stroke Research, 7, 93-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Lu, J., Sun, Z., Fang, Y., et al. (2019) Melatonin Suppresses Microglial Necroptosis by Regulating Deubiquitinating Enzyme A20 after Intracerebral Hemorrhage. Frontiers in Immunology, 10, 1360. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ewen, T., et al. (2013) Neuroprotective Effect of Atorvastatin Involves Suppression of TNF-α and Upregulation of IL-10 in a Rat Model of Intracerebral Hemorrhage. Cell Biochemistry and Biophysics, 66, 337-346. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Li, M., Li, Z., Ren, H., et al. (2017) Colony Stimulating Factor 1 Receptor Inhibition Eliminates Microglia and Attenuates Brain Injury after Intracerebral Hemorrhage. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 37, 2383-2395. [Google Scholar] [CrossRef]
|
|
[41]
|
Feng, L., Chen, Y., Ding, R., Fu, Z., Yang, S., Deng, X., et al. (2015) P2X7R Blockade Prevents NLRP3 Inflammasome Activation and Brain Injury in a Rat Model of Intracerebral Hemorrhage: Involvement of Peroxynitrite. Journal of Neuroinflammation, 12, 190. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Walsh, J.G., Muruve, D.A. and Power, C. (2014) Inflammasomes in the CNS. Nature Reviews Neuroscience, 15, 84-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Li, M., Ren, H., Sheth, K.N., Shi, F.D. and Liu, Q. (2017) A TSPO Ligand Attenuates Brain Injury after Intracerebral Hemorrhage. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 31, 3278-3287. [Google Scholar] [CrossRef]
|
|
[44]
|
Wang, S.H., Yao, Q.H., Wan, Y., et al. (2019) Adiponectin Reduces Brain Injury after Intracerebral Hemorrhage by Reducing NLRP3 Inflammasome Expression. International Journal of Neuroscience, 130, 301-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Xu, J., Duan, Z., Qi, X., et al. (2020) Injectable Gelatin Hydrogel Suppresses Inflammation and Enhances Functional Recovery in a Mouse Model of Intracerebral Hemorrhage. Frontiers in Bioengineering and Biotechnology, 8, 785. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Ye, L., Gao, L. and Cheng, H. (2018) Inflammatory Profiles of the Interleukin Family and Network in Cerebral Hemorrhage. Cell Molecular Neurobiology, 38, 1321-1333. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Miyamoto, T., Kung, D.K., Kitazato, K.T., et al. (2017) Site-Specific Elevation of Interleukin-1β and Matrix Metalloproteinase-9 in the Willis Circle by Hemodynamic Changes Is Associated with Rupture in a Novel Rat Cerebral Aneurysm Model. Journal of Cerebral Blood Flow & Metabolism, 37, 2795-2805. [Google Scholar] [CrossRef]
|
|
[48]
|
Sozen, T., Tsuchiyama, R., Hasegawa, Y., et al. (2009) Role of Interleukin-1beta in Early Brain Injury after Subarachnoid Hemorrhage in Mice. Stroke, 40, 2519-2525. [Google Scholar] [CrossRef]
|