|
[1]
|
Gruber, N. and Galloway, J.N. (2008) An Earth-System Perspective of the Global Nitrogen Cycle. Nature, 451, 293-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Jefferson, M. (2015) IPCC Fifth Assessment Synthesis Report: “Climate Change 2014: Longer Report”: Critical Analysis. Technological Forecasting and Social Change, 92, 362-363. [Google Scholar] [CrossRef]
|
|
[3]
|
Galloway, J.N., Townsend, A.R., Willem Erisman, J., Bekunda, M., Cai, Z., Freney, J.R., Martinelli, L.A., et al. (2008) Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science, 320, 889-892. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ryan, M.G., Hubbard, R.M., Pongracic, S., Raison, R.J. and McMurtrie, R.E. (1996) Foliage, Fine-Root, Woody-Tissue and Stand Respiration in Pinusradiata in Relation to Nitrogen Status. Tree Physiology, 16, 333-343. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Anderson, D.M., Glibert, P.M. and Burkholder, J.M. (2002) Harm-ful Algal Blooms and Eutrophication: Nutrient Sources, Composition, and Consequences. Estuaries, 25, 704-726. [Google Scholar] [CrossRef]
|
|
[6]
|
Dan, B. and Valentine, S.D.W. (2000) Do Forests Receive Occult In-puts of Nitrogen? Ecosystems, 3, 321-331. [Google Scholar] [CrossRef]
|
|
[7]
|
Cowling, G. (2002) Optimizing Nitrogen Management in Food and Energy Productions, and Environmental Change. Reactive Nitrogen and the World: 200 Years of Change. Ambio, 31, 64-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., et al. (2013) Enhanced Nitrogen Deposition over China. Nature, 494, 459-462. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Hyv?Nen, R., Persson, T., Andersson, S., Olsson, B., Ågren, G.I. and Linder, S. (2008) Fluxes of C and N2O in Swedish Forest Land—Results from the Lustra Programme. Impact of Long-Term Nitrogen Addition on Carbon Stocks in Trees and Soils in Northern Europe. Biogeochemistry, 89, 121-137. [Google Scholar] [CrossRef]
|
|
[10]
|
Vogt, K.A., Vogt, D.J., Moore, E.E., Littke, W., Grier, C.C. and Leney, L. (1985) Estimating Douglas-Fir Fine Root Biomass and Production from Living Bark and Starch. Canadian Journal of Forest Research, 15, 177-179. [Google Scholar] [CrossRef]
|
|
[11]
|
Thomas, R.Q., Canham, C.D., Weathers, K.C. and Goodale, C.L. (2010) Increased Tree Carbon Storage in Response to Nitrogen Deposition in the US. Nature Geoscience, 3, 13-17. [Google Scholar] [CrossRef]
|
|
[12]
|
Logan, J.A. (1983) Nitrogen Oxides in the Troposphere: Global and Re-gional Budgets. Journal of Geophysical Research Oceans, 88, 10785-10807. [Google Scholar] [CrossRef]
|
|
[13]
|
Razaq, M., Salahuddin, Shen, H.-L., Sher, H. and Zhang, P. (2017) Influence of Biochar and Nitrogen on Fine Root Morphology, Physiology, and Chemistry of Acer Mono. Scien-tific Reports, 7, Article No. 5367. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Dan, B. and Valentine, S.D.W. (2000) Do Forests Receive Occult Inputs of Nitrogen? Ecosystems, 3, 321-331. [Google Scholar] [CrossRef]
|
|
[15]
|
倪惠菁, 苏文会, 范少辉, 曾宪礼, 金艺. 养分输入方式对森林生态系统土壤养分循环的影响研究进展[J]. 生态学杂志, 2019, 38(3): 863-872.
|
|
[16]
|
Nadelhoffer, K.J. and Raich, J.W. (1992) Fine Root Production Estimates and Belowground Carbon Allocation in Forest Ecosystems. Ecology, 73, 1139-1147. [Google Scholar] [CrossRef]
|
|
[17]
|
Kalyn, A.L. and Van Rees, K.C.J. (2006) Contribution of fine Roots to Ecosystem Biomass and Net Primary Production in Black Spruce, Aspen, and Jack Pine Forests in Saskatche-wan. Agricultural and Forest Meteorology, 140, 236-243. [Google Scholar] [CrossRef]
|
|
[18]
|
Tateno, R., Hishi, T. and Takeda, H. (2004) Above- and Below-Ground Biomass and Net Primary Production in a Cool-Temperate Deciduous Forest in Relation to Topographical Changes in Soil Nitrogen. Forest Ecology & Management, 193, 297-306. [Google Scholar] [CrossRef]
|
|
[19]
|
Dowling, J.E. and Wald, G. (1981) Proceedings of the National Academy of Sciences of the United States of America. Nutrition Reviews, 39, 135-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
王玉霞. 地下净生产力、光合产物分配及根系周转对不同草地恢复措施的响应[D]: [硕士学位论文]. 长春: 东北师范大学, 2014.
|
|
[21]
|
Vogt, K.A., Grier, C.C., Gower, S.T., Sprugel, D.G. and Vogt, D.J. (1986) Overestimation of Net Root Production: A Real or Imaginary Problem? Ecology, 67, 577-579. [Google Scholar] [CrossRef]
|
|
[22]
|
Tonitto, C., Goodale, C. L., Weiss, M.S., Frey, S.D. and Ollinger, S.V. (2014) The Effect of Nitrogen Addition on Soil Organic Matter Dynamics: A Model Analysis of the Harvard Forest Chronic Nitrogen Amendment Study and Soil Carbon Response Toanthropogenic N Deposition. Bioge-ochemistry, 117, 431-454. [Google Scholar] [CrossRef]
|
|
[23]
|
Jackson, G. (2000) Special Issue: Root Dynamics and Global Change: An Ecosystem Perspective. Global Patterns of Root Turnover for Terrestrial Ecosystems. New Phytologist, 147, 13-31. [Google Scholar] [CrossRef]
|
|
[24]
|
Lei, P., Scherer-Lorenzen, M. and Bauhus, J. (2012) The Effect of Tree Species Diversity on Fine-Root Production in a Young Temperate Forest. Oecologia, 169, 1105-1115. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hasselquist, N.J., Metcalfe, D.B., Marshall, J.D., Lucas, R.W. and Högberg, P. (2016) Seasonality and Nitrogen Supply Modify Carbon Partitioning in Understory Vegetation of A Boreal Coniferous Forest. Ecology, 97, 671-683. [Google Scholar] [CrossRef]
|
|
[26]
|
Leppalammi-Kujansuu, J., Salemaa, M., Kleja, D.B., Linder, S. and Helmisaari, H.-S. (2014) Fine Root Turnover and litter production of Norway Spruce in a Long-Term Temperature and Nutrient Manipulation Experiment. Plant and Soil, 374, 73-88. [Google Scholar] [CrossRef]
|
|
[27]
|
Hodge, A., Berta, G., Doussan, C., Merchan, F. and Crespi, M. (2009) Plant Root Growth, Architecture and Function. Plant and Soil, 321, 153-187. [Google Scholar] [CrossRef]
|
|
[28]
|
Valverde Barrantes, O.J., Smemo, K.A., Feinstein, L.M., Kershner, M.W. and Blackwood, C.B. (2013) The Distribution of Below-Ground Traits Is Explained by Intrinsic Species Differences and Intraspecific Plasticity in Response to root Neighbours. Journal of Ecology, 101, 399-342. [Google Scholar] [CrossRef]
|
|
[29]
|
江俐妮, 魏红旭, 刘勇, 徐程扬, 马履一. 长白落叶松播种苗根系形态可塑性与氮素空间异质性关系[J]. 东北林业大学学报, 2010, 38(1): 24-27.
|
|
[30]
|
Reich, P.B., Walters, M.B. and Ellsworth, D.S. (1997) From Tropics to Tundra: Global Convergence in Plant Functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Anderson, L.J., Comas, L.H., Lakso, A.N. and Eissenstat, D.M. (2003) Multiple Risk Factors in Root Survivorship: A 4-Year Study in Concord Grape. New Phytologist, 158, 489-501. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lucas, R.W., Klaminder, J., Futter, M.N., Bishop, K.H., Egnell, G., Laudon, H., et al. (2016) A Meta-Analysis of the Effects of nitrogen additions on base cations: Implications for Plants, Soils, and Streams. Forest Ecology & Management, 262, 95-104. [Google Scholar] [CrossRef]
|
|
[33]
|
梅莉, 王政权, 程云环, 郭大立. 林木细根寿命及其影响因子研究进展[J]. 物生态学报, 2004, 28(5): 704-710.
|
|
[34]
|
胡琪娟, 王霖娇, 盛茂银. 植物细根生产和周转研究进展[J]. 世界林业研究, 2019, 32(2): 29-34.
|
|
[35]
|
陈光水. 杉木林年龄序列土壤呼吸与地下碳分配[D]: [博士学位论文]. 福州: 福建师范大学, 2009.
|
|
[36]
|
Yuan, Z.Y. and Chen, H. (2012) A Global Analysis of Fine Root Production as Affected by Soil Nitrogen and Phosphorus. Proceedings of the Royal Society B: Biological Sciences, 279, 3796-3802. [Google Scholar] [CrossRef]
|
|
[37]
|
Hendricks, J.J., Nadelhoffer, K.J. and Aber, J.D. (1993) As-sessing the Role of Fine Roots in Carbon and Nutrient cycling. Trends in Ecology & Evolution, 8, 174-178. [Google Scholar] [CrossRef]
|
|
[38]
|
闫国永. 模拟氮沉降对兴安落叶松细根动态和形态结构的影响[D]: [硕士学位论文]. 哈尔滨: 东北林业大学, 2017.
|
|
[39]
|
Li, W., Jin, C., Guan, D., Wang, Q., Wang, A., Yuan, F., et al. (2015) The Effects of Simulated Nitrogen Deposition on Plant Root Traits: A Meta-Analysis. Soil Biology & Biochemistry, 82, 112-118. [Google Scholar] [CrossRef]
|
|
[40]
|
Ostertag, R. (2001) Effects of Nitrogen and Phosphorus Availability on Fine-Root Dynamics in Hawaiian Montane Forests. Ecology, 82, 485-499. [Google Scholar] [CrossRef]
|
|
[41]
|
Hendricks, J.J., Hendrick, R.L., Wilson, C.A., Mitchell, R.J., Pecot, S.D. and Guo, D. et al. (2010) Assessing the Patterns and Controls of Fine Root Dynamics: An Empirical Test and Methodological Review. Journal of Ecology, 94, 40-57. [Google Scholar] [CrossRef]
|
|
[42]
|
Trumbore, S.E. and Gaudinski, J.B. (2003) The Secret Lives of Roots. Science, 302, 1344-1345. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Gaul, D., Hertel, D., Borken, W., Matzner, E. and Leuschner, C. (2008) Effects of Experimental Drought on the Fine Root System of Mature Norway Spruce. Forest Ecology and Management, 256, 1151-1159. [Google Scholar] [CrossRef]
|
|
[44]
|
Vogt, K.A., Vogt, D.J., Palmiotto, P.A., Boon, P., O’Hara, J. and Asbjornsen, H. (1996) Review of Root Dynamics in Forest Ecosystems Grouped by Climate, Climatic Forest Type And Species. Plant and Soil, 187, 159-219. [Google Scholar] [CrossRef]
|
|
[45]
|
Nadelhoffer, K.J. (2000) The Potential Effects of Nitrogen Deposition on Fine-Root Production in Forest Ecosystems. New Phytologist, 147, 131-139. [Google Scholar] [CrossRef]
|
|
[46]
|
Delledonne, M., Zeier, J., Marocco, A. and Lamb, C. (2001) Signal Interactions between Nitric Oxide and Reactive Oxygen Intermediates in the Plant Hypersensitive Disease Resistance Response. Proceedings of the National Academy of Sciences of the United States of America, 98, 13454-13459. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zaninotto, F., La Camera, S., Polverari, A. and Delledonne, M. (2006) Cross Talk between Reactive Nitrogen and Oxygen Species during the Hypersensitive Disease Resistance Response. Plant Physiology, 141, 379-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Burton, A.J., Jarvey, J.C., Jarvi, M.P., Zak, D.R. and Pregitzer, K.S. (2015) Chronic N Deposition Alters Root Respiration-Issue N Relationship in Northern Hardwood Forests. Global Change Biology, 18, 258-266. [Google Scholar] [CrossRef]
|
|
[49]
|
Adams, T.S. and Eissenstat, D.M. (2015) On the Controls of Root Lifespan: Assessing the Role of Soluble Phenolics. Plant & Soil, 392, 301-308. [Google Scholar] [CrossRef]
|
|
[50]
|
Galloway, J.N., Aber, J.D., Erisman, J.W., Seitzinger, Sybil P., Howarth, R.W., Cowling, E.B., et al. (2003) The Nitrogen Cascade. BioScience, 53, 341-356. [Google Scholar] [CrossRef]
|
|
[51]
|
Pregitzer, K.S., Laskowski, M.J., Burton, A.J., Lessard, V.C. and Zak, D.R. (1998) Variation in Sugar Maple Root Respiration with Root Diameter and Soil Depth. Tree Physiology, 18, 665-670. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Adams, T.S., Luke, M.C.M. and Eissenstat, D.M. (2013) Forag-ing Strategies in Trees of Different Root Morphology: The Role of Root Lifespan. Tree Physiology, 33, 940-948. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
陈冠陶, 彭勇, 郑军, 等. 氮添加对亚热带次生常绿阔叶林扁刺栲细根生物量、寿命和形态的短期影响[J]. 植物生态学报, 2017, 41(10): 1041-1050. [Google Scholar] [CrossRef]
|
|
[54]
|
Xia, M., Guo, D. and Pregitzer, K.S. (2010) Ephemeral Root Mod-ules in Fraxinus mandshurica. New Phytologist, 188, 1065-1074. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Kramer-Walter, K.R., Bellingham, P.J., Millar, T.R., Smissen, R.D., Richardson, S.J. and Laughlin, D.C. (2016) Root Traits Are Multidimensional: Specific Root Length Is Independent from Root Tissue Density and the Plant Economic Spectrum. Journal of Ecology, 104, 1299-1310. [Google Scholar] [CrossRef]
|
|
[56]
|
史顺增, 熊德成, 冯建新, 等. 模拟氮沉降对杉木幼苗细根的生理生态影响[J]. 生态学报, 2017, 37(1): 74-83.
|
|
[57]
|
Ostonen, I., Lõhmus, K., Helmisaari, H.-S., Truu, J. and Meel, S. (2007) Fine Root Morphological Adaptations in Scots Pine, Norway Spruce and Silver Birch along a Latitudinal Gradient in Boreal Forests. Tree Physiology, 27, 1627-1634. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Wang, C., Han, S., Zhou, Y., Yan, C., Cheng, X., Zheng, X., et al. (2012) Responses of Fine Roots and Soil N Availability to Short-Term Nitrogen Fertilization in a Broad-Leaved Korean Pine Mixed Forest in Northeastern China. PLoS ONE, 7, Article ID: e31042. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Chen, G.T., Tu, L.H., Peng, Y., Hu, H.-L., Hu, T.-X., Xu, Z.-F., et al. (2016) Effect of Nitrogen Additions on Root Morphology and Chemistry in a Subtropical Bamboo Forest. Plant & Soil, 412, 441-451. [Google Scholar] [CrossRef]
|
|
[60]
|
贾林巧, 陈光水, 张礼宏, 陈廷廷, 姜琦, 陈宇辉, 范爱连, 王雪. 罗浮栲和米槠细根形态功能性状对短期氮添加的可塑性响应[J]. 应用生态学报, 2019, 30(12): 4003-4011.
|
|
[61]
|
Kou, L., Guo, D., Yang, H., Gao, W. and Li, S. (2015) Growth, Morphological Traits and Mycorrhizal Colonization of Fine Roots Respond Differently to Nitrogen Addition in a Slash Pine Plantation in Subtropical China. Plant and Soil, 391, 207-218. [Google Scholar] [CrossRef]
|
|
[62]
|
Tobner, C.M., Paquette, A. and Messier, C. (2013) Interspecific Coordination and Intraspecific Plasticity of Fine Root Traits in North American Temperate Tree Species. Frontiers in Plant Science, 4, Article No, 242. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Yong, Z., Su, J., Janssens, I.A., Zhou, G. and Xiao, C. (2014) Fine Root and Litterfall Dynamics of Three Korean Pine (Pinus koraiensis) Forests along an Altitudinal Gradient. Plant and Soil, 374, 19-32. [Google Scholar] [CrossRef]
|
|
[64]
|
Pregitzer, K.S., Deforest, J.L., Burton, A.J., Allen, M.F., Ruess, R.W. and Hendrick, R.L. (2002) Fine Root Architecture of Nine North American Trees. Ecological Monographs, 72, 293-309. [Google Scholar] [CrossRef]
|
|
[65]
|
Burton, A.J., Melillo, J.M. and Frey, S.D. (2010) Adjustment of Forest Ecosystem Root Respiration as Temperature Warms. Journal of Integrative Plant Biology, 50, 1467-1483. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Hang, J., Zhou, H., Wang, G., Xue, S., Liu, G. and Duan, M. (2017) Nitrogen Addition Changes the Stoichiometry and Growth Rate of Different Organs in Pinus tabuliformis Seedlings. Frontiers in Plant Science, 8, Article No. 1922. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Boldt-Burisch, K.M., Gerke, H.H., Nii-Annang, S., Schneider, B.U. and Hüttl, R.F. (2013) Root System Development of Lotus corniculatus L. in Calcareous Sands with Embedded Fin-er-Textured Fragments in an Initial Soil. Plant & Soil, 368, 281-296. [Google Scholar] [CrossRef]
|
|
[68]
|
郭伟, 宫浩, 韩士杰, 等. 氮,水交互对长白山阔叶红松林细根形态及生产量的影响[J]. 北京林业大学学报, 2016, 38(4): 29-35.
|
|
[69]
|
Martin, M.H. (1988) Reviewed Work: The Mineral Nutrition of Higher Plants by H. Marschner. Journal of Ecology, 76, 1250. [Google Scholar] [CrossRef]
|
|
[70]
|
Mei, L., Gu, J., Zhang, Z. and Wang, Z. (2010) Responses of Fine Root Mass, Length, Production and Turnover to Soil Nitrogen Fertilization in Larix gmelinii and Fraxinus mandshurica Forests in Northeastern China. Journal of Forest Research, 15, 194-201. [Google Scholar] [CrossRef]
|
|
[71]
|
Wang, G., Fahey, T.J., Xue, S. and Liu, F. (2012) Root Mor-phology and Architecture Respond to N Addition in Pinus tabuliformis, West China. Oecologia, 171, 583-590. [Google Scholar] [CrossRef] [PubMed]
|