|
[1]
|
Wimo, A., Jonsson, L., Bond, J., Prince, M., Winblad, B. and Alzheimer Disease, I. (2013) The Worldwide Economic Impact of Dementia 2010. Alzheimer’s & Dementia, 9, 1-11.e13. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D. and Jones, E. (2011) Alzheimer’s Disease. Lancet, 377, 1019-1031. [Google Scholar] [CrossRef]
|
|
[3]
|
Moller, H.J. and Graeber, M.B. (1998) The Case Described by Alois Alzheimer in 1911. Historical and Conceptual Perspectives Based on the Clinical Record and Neurohistological Sections. European Archives of Psychiatry and Clinical Neuroscience, 248, 111-122. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Selkoe, D.J. (2002) Alzheimer’s Disease Is a Synaptic Failure. Science, 298, 789-791. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Pitt, J., Roth, W., Lacor, P., Smith, A.B., 3rd, Blankenship, M., Velasco, P., De Felice, F., Breslin, P. and Klein, W.L. (2009) Alzheimer’s-Associated Aβ Oligomers Show Altered Structure, Immunoreactivity and Synaptotoxicity with Low Doses of Oleocanthal. Toxicology and Applied Pharmacology, 240, 189-197. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Lasagna-Reeves, C.A., Castillo-Carranza, D.L., Sengupta, U., Sarmiento, J., Troncoso, J., Jackson, G.R. and Kayed, R. (2012) Identification of Oligomers at Early Stages of Tau Aggregation in Alzheimer’s Disease. The FASEB Journal, 26, 1946-1959. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Lu, Y., Wang, R., Dong, Y., Tucker, D., Zhao, N., Ahmed, M.E., Zhu, L., Liu, T.C., Cohen, R.M. and Zhang, Q. (2017) Low-Level Laser Therapy for β Amyloid Toxicity in Rat Hippocampus. Neurobiology of Aging, 49, 165-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Anders, J.J., Arany, P.R., Baxter, G.D. and Lanzafame, R.J. (2019) Light-Emitting Diode Therapy and Low-Level Light Therapy Are Photobiomodulation Therapy. Photobiomodulation, Photomedicine, and Laser Surgery, 37, 63-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Moro, C., El Massri, N., Darlot, F., Torres, N., Chabrol, C., Agay, D., Auboiroux, V., Johnstone, D.M., Stone, J., Mitrofanis, J. and Benabid, A.L. (2016) Effects of a Higher Dose of Near-Infrared Light on Clinical Signs and Neuroprotection in a Monkey Model of Parkinson’s Disease. Brain Research, 1648, 19-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Cassano, P., Cusin, C., Mischoulon, D., Hamblin, M.R., De Taboada, L., Pisoni, A., Chang, T., Yeung, A., Ionescu, D.F., Petrie, S.R., Nierenberg, A.A., Fava, M. and Iosifescu, D.V. (2015) Near-Infrared Transcranial Radiation for Major Depressive Disorder: Proof of Concept Study. Psychiatry Journal, 2015, Article ID: 352979. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kanai, A. (2012) Xenon Light Therapy. Masui, 61, 693-699.
|
|
[12]
|
Karu, T.I. and Kolyakov, S.F. (2005) Exact Action Spectra for Cellular Responses Relevant to Phototherapy. Photomedicine and Laser Surgery, 23, 355-361. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, P. and Li, T. (2019) Which Wavelength Is Optimal for Transcranial Low-Level Laser Stimulation? Journal of Biophotonics, 12, e201800173. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wang, M., Cao, J., Amakye, W.K., Gong, C., Li, Q. and Ren, J. (2020) Mid Infrared Light Treatment Attenuates Cognitive Decline and Alters the Gut Microbiota Community in APP/PS1 Mouse Model. Biochemical and Biophysical Research Communications, 523, 60-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Gupta, A., Dai, T. and Hamblin, M.R. (2014) Effect of Red and Near-Infrared Wavelengths on Low-Level Laser (Light) Therapy-Induced Healing of Partial-Thickness Dermal Abrasion in Mice. Lasers in Medical Science, 29, 257-265. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zinchenko, E., Navolokin, N., Shirokov, A., Khlebtsov, B., Dubrovsky, A., Saranceva, E., Abdurashitov, A., Khorovodov, A., Terskov, A., Mamedova, A., Klimova, M., Agranovich, I., Martinov, D., Tuchin, V., Semyachkina-Glushkovskaya, O. and Kurts, J. (2019) Pilot Study of Transcranial Photobiomodulation of Lymphatic Clearance of Beta-Amyloid from the Mouse Brain: Breakthrough Strategies for Non-Pharmacologic Therapy of Alzheimer’s Disease. Biomedical Optics Express, 10, 4003-4017. [Google Scholar] [CrossRef]
|
|
[17]
|
De Taboada, L., Yu, J., El-Amouri, S., Gattoni-Celli, S., Richieri, S., McCarthy, T., Streeter, J. and Kindy, M.S. (2011) Transcranial laser therapy attenuates amyloid-beta peptide neuropathology in amyloid-beta protein precursor transgenic mice. Journal of Alzheimer’s Disease, 23, 521-535. [Google Scholar] [CrossRef]
|
|
[18]
|
Hashmi, J.T., Huang, Y.Y., Sharma, S.K., Kurup, D.B., De Taboada, L., Carroll, J.D. and Hamblin, M.R. (2010) Effect of Pulsing in Low-Level Light Therapy. Lasers in Surgery and Medicine, 42, 450-466. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Tedford, C.E., DeLapp, S., Jacques, S. and Anders, J. (2015) Quantitative Analysis of Transcranial and Intraparenchymal Light Penetration in Human Cadaver Brain Tissue. Lasers in Surgery and Medicine, 47, 312-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Henderson, T.A. and Morries, L.D. (2015) Near-Infrared Photonic Energy Penetration: Can Infrared Phototherapy Effectively Reach the Human Brain? Neuropsychiatric Disease and Treatment, 11, 2191-2208. [Google Scholar] [CrossRef]
|
|
[21]
|
Hamblin, M.R. (2016) Shining Light on the Head: Photobiomodulation for Brain Disorders. BBA Clinical, 6, 113-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Jagdeo, J.R., Adams, L.E., Brody, N.I. and Siegel, D.M. (2012) Transcranial Red and Near Infrared Light Transmission in a Cadaveric Model. PLoS ONE, 7, e47460. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Salehpour, F., Cassano, P., Rouhi, N., Hamblin, M.R., De Taboada, L., Farajdokht, F. and Mahmoudi, J. (2019) Penetration Profiles of Visible and Near-Infrared Lasers and Light-Emitting Diode Light Through the Head Tissues in Animal and Human Species: A Review of Literature. Photobiomodulation, Photomedicine, and Laser Surgery, 37, 581-595. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Tunér, J. and Hode, L. (2002) Laser Therapy—Clinical Practice and Scientific Background. Prima Books, Grangesberg.
|
|
[25]
|
Begum, R., Calaza, K., Kam, J.H., Salt, T.E., Hogg, C. and Jeffery, G. (2015) Near-Infrared Light Increases ATP, Extends Lifespan and Improves Mobility in aged Drosophila melanogaster. Biology Letters, 11, Article ID: 20150073. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yu, Z., Liu, N., Zhao, J., Li, Y., McCarthy, T.J., Tedford, C.E., Lo, E.H. and Wang, X. (2015) Near Infrared Radiation Rescues Mitochondrial Dysfunction in Cortical Neurons after Oxygen-Glucose Deprivation. Metabolic Brain Disease, 30, 491-496. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Lima, P.L. V., Pereira, C.V., Nissanka, N., Arguello, T., Gavini, G., Maranduba, C., Diaz, F. and Moraes, C.T. (2019) Photobiomodulation Enhancement of Cell Proliferation at 660nm Does Not Require Cytochrome C Oxidase. Journal of Photochemistry and Photobiology B: Biology, 194, 71-75. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Blivet, G., Meunier, J., Roman, F.J. and Touchon, J. (2018) Neuroprotective Effect of a New Photobiomodulation Technique against Aβ25-35 Peptide-Induced Toxicity in Mice: Novel Hypothesis for Therapeutic Approach of Alzheimer’s Disease Suggested. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 4, 54-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Comerota, M.M., Krishnan, B. and Taglialatela, G. (2017) Near Infrared Light Decreases Synaptic Vulnerability to Amyloid Beta Oligomers. Scientific Reports, 7, Article No. 15012. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Comerota, M.M., Tumurbaatar, B., Krishnan, B., Kayed, R. and Taglialatela, G. (2019) Near Infrared Light Treatment Reduces Synaptic Levels of Toxic Tau Oligomers in Two Transgenic Mouse Models of Human Tauopathies. Molecular Neurobiology, 56, 3341-3355. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Salehpour, F., Hamblin, M.R. and DiDuro, J.O. (2019) Rapid Reversal of Cognitive Decline, Olfactory Dysfunction, and Quality of Life Using Multi-Modality Photobiomodulation Therapy: Case Report. Photobiomodulation, Photomedicine, and Laser Surgery, 37, 159-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Berman, M.H., Halper, J.P., Nichols, T.W., Jarrett, H., Lundy, A. and Huang, J.H. (2017) Photobiomodulation with Near Infrared Light Helmet in a Pilot, Placebo Controlled Clinical Trial in Dementia Patients Testing Memory and Cognition. Journal of Neurology and Neuroscience, 8, Article No. 176. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Chao, L.L. (2019) Effects of Home Photobiomodulation Treatments on Cognitive and Behavioral Function, Cerebral Perfusion, and Resting-State Functional Connectivity in Patients with Dementia: A Pilot Trial. Photobiomodulation, Photomedicine, and Laser Surgery, 37, 133-141. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Lim, L. (2013) The Potential of Treating Alzheimer’s Disease with Intranasal Light Therapy. MedicLights Research Inc., Toronto.
|
|
[35]
|
El Khoury, H., Mitrofanis, J. and Henderson, L.A. (2019) Exploring the Effects of Near Infrared Light on Resting and Evoked Brain Activity in Humans Using Magnetic Resonance Imaging. Neuroscience, 422, 161-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Barrett, D.W. and Gonzalez-Lima, F. (2013) Transcranial Infrared Laser Stimulation Produces Beneficial Cognitive and Emotional Effects in Humans. Neuroscience, 230, 13-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Blanco, N.J., Maddox, W.T. and Gonzalez-Lima, F. (2017) Improving Executive Function Using Transcranial Infrared Laser Stimulation. Journal of Neuropsychology, 11, 14-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Tsai, S.R. and Hamblin, M.R. (2017) Biological Effects and Medical Applications of Infrared Radiation. Journal of Photochemistry and Photobiology B: Biology, 170, 197-207. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
McCarthy, T.J., De Taboada, L., Hildebrandt, P.K., Ziemer, E.L., Richieri, S.P. and Streeter, J. (2010) Long-Term Safety of Single and Multiple Infrared Transcranial Laser Treatments in Sprague-Dawley Rats. Photomedicine and Laser Surgery, 28, 663-667. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Moro, C., Massri, N.E., Torres, N., Ratel, D., De Jaeger, X., Chabrol, C., Perraut, F., Bourgerette, A., Berger, M., Purushothuman, S., Johnstone, D., Stone, J., Mitrofanis, J. and Benabid, A.L. (2014) Photobiomodulation Inside the Brain: A Novel Method of Applying Near-Infrared Light Intracranially and Its Impact on Dopaminergic Cell Survival in MPTP-Treated Mice. Journal of Neurosurgery, 120, 670-683. [Google Scholar] [CrossRef]
|
|
[41]
|
Chaves, M.E., Araujo, A.R., Piancastelli, A.C. and Pinotti, M. (2014) Effects of Low-Power Light Therapy on Wound Healing: LASER × LED. Anais Brasileiros de Dermatologia, 89, 616-623. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Ilic, S., Leichliter, S., Streeter, J., Oron, A., DeTaboada, L. and Oron, U. (2006) Effects of Power Densities, Continuous and Pulse Frequencies, and Number of Sessions of Low-Level Laser Therapy on Intact Rat Brain. Photomedicine and Laser Surgery, 24, 458-466. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Saltmarche, A.E., Naeser, M.A., Ho, K.F., Hamblin, M.R. and Lim, L. (2017) Significant Improvement in Cognition in Mild to Moderately Severe Dementia Cases Treated with Transcranial Plus Intranasal Photobiomodulation: Case Series Report. Photomedicine and Laser Surgery, 35, 432-441. [Google Scholar] [CrossRef] [PubMed]
|