| 
                                            [1]
                                         | 
                                        
                                             Chemin, J.-Y., Desjardins, B., Gallagher, I. and Grenier, E. (2000) Fluids with Anisotropic Viscosity. ESAIM: Mathematical Modelling and Numerical Analysis, 34, 315-335.   https://doi.org/10.1051/m2an:2000143 
                                         | 
                                    
                     
                                
                                    
                                        | 
                                            [2]
                                         | 
                                        
                                             Iftimie, D. (2002) A Uniqueness Result for the Navier-Stokes Equations with Vanishing Vertical Viscosity. SIAM Journal on Mathematical Analysis, 33, 1483-1493.   https://doi.org/10.1137/S0036141000382126 
                                         | 
                                    
                     
                                
                                    
                                        | 
                                            [3]
                                         | 
                                        
                                             Iftimie, D. (1999) The 3D Navier-Stkoes Equation Seen as a Perturbation of the 2D Navier- Stkoes Equations. Bulletin de la Soci´et´e Math´ematique de France, 127, 473-517.  https://doi.org/10.24033/bsmf.2358 
                                         | 
                                    
                     
                                
                                    
                                        | 
                                            [4]
                                         | 
                                        
                                             Paicu, M. (2005) E´ quation anisotrope de Navier-Stokes dans des espaces critiques. Revista Matema´tica Iberoamericana, 21, 179-235.  https://doi.org/10.4171/RMI/420 
                                         | 
                                    
                     
                                
                                    
                                        | 
                                            [5]
                                         | 
                                        
                                             Chemin, J.-Y. and Zhang, P. (2007) On the Global Well Posedness to the 3-D Incompressible Anisotropic Navier-Stokes Equations. Communications in Mathematical Physics, 272, 529-566.   https://doi.org/10.1007/s00220-007-0236-0 
                                         | 
                                    
                     
                                
                                    
                                        | 
                                            [6]
                                         | 
                                        
                                             Paicu, M. and Majdoub, M. (2009) Uniform Local Existence for Inhomogeneous Rotating Fluid Equations. Journal of Dynamics and Differential Equations, 21, 21-44.  https://doi.org/10.1007/s10884-008-9120-7 
                                         | 
                                    
                     
                                
                                    
                                        | 
                                            [7]
                                         | 
                                        
                                             Paicu, M. and Zhang, P. (2011) Global Solutions to the 3-D Incompressible Anisotropic Navier- Stokes System in the Critical Spaces. Communications in Mathematical Physics, 307, 713-759.   https://doi.org/10.1007/s00220-011-1350-6 
                                         | 
                                    
                     
                                
                                    
                                        | 
                                            [8]
                                         | 
                                        
                                             Ding, Y. and Sun, X. (2015) Uniqueness of Weak Solutions for Fractional Navier-Stokes Equa- tions. Frontiers of Mathematics in China, 10, 33-51.
 https://doi.org/10.1007/s11464-014-0370-x 
                                         | 
                                    
                     
                                
                                    
                                        | 
                                            [9]
                                         | 
                                        
                                             de Oliveira, H.B. (2019) Generalized Nacier-Stokes Equations with Nonlinear Anisotropic Vis- cosity. Analysis and Applications (Singap.), 17, 977-1003.   https://doi.org/10.1142/S021953051950009X 
                                         | 
                                    
                     
                                
                                    
                                        | 
                                            [10]
                                         | 
                                        
                                             Liu, Y., Paicu, M. and Zhang, P. (2020) Global Well-Posedness of 3-D Anisotropic Navier-Stokes System with Small Unidirectional Derivative. Archive for Rational Mechanics and Anal- ysis,  238,  805-843.   https://doi.org/10.1007/s00205-020-01555-x 
                                         | 
                                    
                     
                                
                                    
                                        | 
                                            [11]
                                         | 
                                        
                                             Sun, X. and Liu, H. (2021) Uniqueness of the Weak Solution to the Fractional Anisotropic Navier-Stokes Equations. Mathematical Methods in the Applied Sciences, 44, 253-264.   https://doi.org/10.1002/mma.6727 
                                         | 
                                    
                     
                                
                                    
                                        | 
                                            [12]
                                         | 
                                        
                                             Li, F. and Yuan, B. (2021) Global Well-Posedness of the 3D Generalized Navier-Stokes E-quations with Fractional Partial Dissipation. Acta Applicandae Mathematicae, 171, 16 p.   https://doi.org/10.1007/s10440-021-00388-4 
                                         | 
                                    
                     
                                
                                    
                                        | 
                                            [13]
                                         | 
                                        
                                             Abidin, M. and Chen, J. (2021) Global Well-Posedness for Fractional Navier-Stokes Equations in Variable Exponent Fourier-Besov-Morrey Spaces. Acta Mathematica Scientia, 41, 164-176.   https://doi.org/10.1007/s10473-021-0109-1 
                                         | 
                                    
                     
                                
                                    
                                        | 
                                            [14]
                                         | 
                                        
                                             Lou, Z., Yang, Q., He, J. and He, K. (2021) Uniform Analytic Solutions for Fractional Navier- Stokes Equations. Applied Mathematics Letters, 112, 106784, 7 p.  https://doi.org/10.1016/j.aml.2020.106784 
                                         |