单边 Gorenstein 复形
One-Sided Gorenstein Complexes
DOI: 10.12677/PM.2021.1112223, PDF, HTML,    国家自然科学基金支持
作者: 李彦洁:西北师范大学数学与统计学院,甘肃 兰州
关键词: 自正交类右 (左) W-Gorenstein 模右 (左) W-Gorenstein 复形Self-Orthogonal Class Right (Left) W-Gorenstein Modules Right (Left) W-Gorenstein Complexes
摘要: 设 W 是一个关于扩张封闭的自正交左 R-模类。 引入了右 (左) W-Gorenstein 复形的概念,证明了复形 M 是右 (左) W-Gorenstein复形当且仅当对任意的 n ∈ℤ, Mn 是右 (左) W-Gorenstein 模。 作为应用,由右 (左) W-Gorenstein 模的性质推得了右 (左) W-Gorenstein复形的一些性质。
Abstract: Let W be a self-orthogonal class of left R-modules which is closed under extensions. In this article, the notion of right (left) W-Gorenstein complexes is introduced, and we show that a complex M is right (left) W-Gorenstein if and only if each Mn is right (left) W-Gorenstein module for any n ∈ Z. As applications, some properties of right (left) W-Gorenstein complexes are deduced from those of right (left) W-Gorenstein modules.
文章引用:李彦洁. 单边 Gorenstein 复形[J]. 理论数学, 2021, 11(12): 2003-2011. https://doi.org/10.12677/PM.2021.1112223

参考文献

[1] Auslander, M. and Bridger, M. (1969) Stable Module Theory. Memoirs of the American Mathematical Society, Providence, RI. [Google Scholar] [CrossRef
[2] Enoch, E.E. and Jenda, O.M.G. (1995) Gorenstein Injective and Projective Modules. Mathematische Zeitschrift, 220, 611-633. [Google Scholar] [CrossRef
[3] Sather-Wagstaff, S., Sharif, T. and White, D. (2008) Stability of Gorenstein Categories. Journal of the London Mathematical Society, 77, 481-502. [Google Scholar] [CrossRef
[4] Geng, Y.X. and Ding, N.Q. (2011) W-Gorenstein Modules. Journal of Algebra, 325, 132-146. [Google Scholar] [CrossRef
[5] Song, W.L., Zhao, T.W. and Huang, Z.Y. (2020) One-Sided Gorenstein Subcategories. Czechoslovak Mathematical Journal, 70, 483-504. [Google Scholar] [CrossRef
[6] Enochs, E.E. and Garc´1a Rozas, J.R. (1998) Gorenstein Injective and Projective Complexes. Communications in Algebra, 26, 1657-1674. [Google Scholar] [CrossRef
[7] Yang, G. (2011) Gorenstein Projective, Injective and Flat Complexes. Acta Mathematica Sinica (Chinese Series), 54, 451-460.
[8] Xin, D.W., Chen, J.L. and Zhang, X.X. (2013) Completely W -Resolved Complexes. Communications in Algebra, 41, 1094-1106. [Google Scholar] [CrossRef
[9] Holm, H. and White D. (2007) Foxby Equivalence over Associative Rings. Journal of Mathematics of Kyoto University, 47, 781-808. [Google Scholar] [CrossRef
[10] Yang, C.H. and Liang, L. (2012) Gorenstein Injective and Projective Complexes with Respect to a Semidualizing Module. Communications in Algebra, 40, 3352-3364. [Google Scholar] [CrossRef
[11] Gillespie, J. (2004) The Flat Model Structure on Ch(R). Transactions of the American Mathematical Society, 356, 3369-3390. [Google Scholar] [CrossRef
[12] Liang, L., Ding, N.Q. and Yang, G. (2014) Some Remarks on Projective Generators and Injective Cogenerators. Acta Mathematica Sinica (English Series), 30, 2063-2078. [Google Scholar] [CrossRef