|
[1]
|
World Health Organization (2003) International Classification of Diseases 10th Revision (ICD-10).
http://www.who.int/classifications/icd/en
|
|
[2]
|
Reilly, M.T., Noronha, A., Goldman, D., et al. (2017) Genetic Studies of Alcohol Dependence in the Context of the Addiction Cycle. Neuropharmacology, 122, 3-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Integrative, H.M.P. (iHMP) Research Network Consortium (2019) The Integrative Human Microbiome Project. Nature, 569, 641-648. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Pitocco, D., Di Leo, M., Tartaglione, L., et al. (2020) The Role of Gut Microbiota in Mediating Obesity and Diabetes Mellitus. European Review for Medical and Pharmacological Sciences, 24, 1548-1562.
|
|
[5]
|
Scheithauer, T.P.M., Rampanelli, E., Nieuwdorp, M., et al. (2020) Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Frontiers in Immunology, 11, 2546. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Witkowski, M., Weeks, T.L. and Hazen, S.L. (2020) Gut Microbiota and Cardiovascular Disease. Circulation Research, 127, 553-570. [Google Scholar] [CrossRef]
|
|
[7]
|
Vascellari, S., Palmas, V., Melis, M., et al. (2020) Gut Microbiota and Metabolome Alterations Associated with Parkinson’s Disease. Msystems, 5, e00561-20. [Google Scholar] [CrossRef]
|
|
[8]
|
Jiang, H.Y., Zhang, X., Yu, Z.H., et al. (2018) Altered Gut Microbiota Profile in Patients with Generalized Anxiety Disorder. Journal of Psychiatric Research, 104, 130-136. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Liang, S., Wu, X., Hu, X., et al. (2018) Recognizing Depression from the Microbiota-Gut-Brain Axis. International Journal of Molecular Sciences, 19, 1592. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhu, F., Ju, Y., Wang, W., et al. (2020) Metagenome-Wide Association of Gut Microbiome Features for Schizophrenia. Nature Communications, 11, Article No. 1612. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Jiang, C., Li, G., Huang, P., et al. (2017) The Gut Microbiota and Alzheimer’s Disease. Journal of Alzheimer’s Disease, 58, 1-15. [Google Scholar] [CrossRef]
|
|
[12]
|
De Angelis, M., Francavilla, R., Piccolc, M., et al. (2015) Autism Spectrum Disorders and Intestinal Microbiota. Gut Microbes, 6, 207-213. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., et al. (2012) Diversity, Stability and Resilience of the Human Gut Microbiota. Nature, 489, 220-230. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Breitbart, M., Hewson, I., Felts, B., et al. (2003) Metagenomic Analyses of an Uncultured Viral Community from Human Feces. Journal of Bacteriology, 185, 6220-6223. [Google Scholar] [CrossRef]
|
|
[15]
|
朱锡群, 易伟. 微生物群–脑–肠轴和中枢神经系统研究进展[J]. 疑难病杂志, 2018, 17(7): 748-752.
|
|
[16]
|
Grenham, S., Clarke, G., Cryan, J.F., et al. (2011) Brain-Gut-Microbe Communication in Health and Disease. Frontiers in Physiology, 2, Article No. 94. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Bravo, J.A., Forsythe, P., Chew, M., et al. (2011) Ingestion of Lactobacillus Strain Regulates Emotional Behavior and Central GABA Receptor Expression in a Mouse via the Vagus Nerve. Proceedings of the National Academy of Sciences of the United States of America, 108, 16050-16055. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lvte, M. (2013) Microbial Endocrinology in the Microbiome-Gut-Brain Axis: How Bacterial Production and Utilization of Neurochemicals Influence Behavior. PLOS Pathogens, 9, e1003726. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Montiel-Castro, A.J., Gonzalez-Cervantes, R.M., Bravo-Ruiseco, G., et al. (2013) The Microbiota-Gut-Brain Axis: Neurobehavioral Correlates, Health and Sociality. Frontiers in Integrative Neuroscience, 7, Article No. 70. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Brandscheid, C., Schuck, F., Reinhardt, S., et al. (2017) Altered Gut Microbiome Composition and Tryptic Activity of the 5xFAD Alzheimer’s Mouse Model. Journal of Alzheimer’s Dis-ease, 56, 775-788. [Google Scholar] [CrossRef]
|
|
[21]
|
Holland, A.M., Bon-Frauches, A.C., Keszthelyi, D., et al. (2021) The Enteric Nervous System in Gastrointestinal Disease Etiology. Cellular and Molecular Life Sciences, 78, 4713-4733. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Kabouridis, P.S., Lasrado, R., Mccallum, S., et al. (2015) The Gut Microbiota Keeps Enteric Glial Cells on the Move; Prospective Roles of the Gut Epithelium and Immune System. Gut Microbes, 6, 398-403. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
De Vadder, F., Grasset, E., Manneras, H.L., et al. (2018) Gut Microbiota Regulates Maturation of the Adult Enteric Nervous System via Enteric Serotonin Networks. Proceedings of the National Academy of Sciences of the United States of America, 115, 6458-6463. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Dalile, B., Vanoudenhove, L., Vervliet, B., et al. (2019) The Role of Short-Chain Fatty Acids in Microbiota-Gut-Brain Communication. Nature Reviews Gastroenterology & Hepatology, 16, 461-478. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Lyte, M., Li, W., Opitz, N., et al. (2006) Induction of Anxie-ty-Like Behavior in Mice during the Initial Stages of Infection with the Agent of Murine Colonic Hyperplasia Citrobacter rodentium. Physiology & Behavior, 89, 350-357. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Goehler, L.E., Park, S.M., Opitz, N., et al. (2008) Campylo-bacter jejuni Infection Increases Anxiety-Like Behavior in the Holeboard: Possible Anatomical Substrates for Vis-cerosensory Modulation of Exploratory Behavior. Brain, Behavior, and Immunity, 22, 354-366. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Bercik, P., Park, A.J., Sinclair, D., et al. (2011) The Anxiolytic Ef-fect of Bifidobacterium longum NCC3001 Involves Vagal Pathways for Gut-Brain Communication. Neurogastroenter-ology & Motility, 23, 1132-1139. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Diaz Heijtz, R., Wang, S., Anuar, F., et al. (2011) Normal Gut Microbiota Modulates Brain Development and Behavior. Proceedings of the National Academy of Sciences of the United States of America, 108, 3047-3052. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Smith, P.M., Howitt, M.R., Panikov, N., et al. (2013) The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis. Science (New York, NY), 341, 569-573. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Louis, P. and Flint, H.J. (2009) Diversity, Metabolism and Microbial Ecology of Butyrate-Producing Bacteria from the Human Large Intestine. FEMS Microbiology Letters, 294, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Macfabe, D.F., Cain, N.E., Boon, F., et al. (2011) Effects of the Enteric Bacterial Metabolic Product Propionic Acid on Object-Directed Behavior, Social Behavior, Cognition, and Neuroinflammation in Adolescent Rats: Relevance to Autism Spectrum Disorder. Behavioural Brain Research, 217, 47-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Gorski, J.A., Zeiler, S.R., Tamowski, S., et al. (2003) Brain-Derived Neurotrophic Factor Is Required for the Maintenance of Cortical Dendrites. The Journal of Neuroscience, the Official Journal of the Society for Neuroscience, 23, 6856-6865. [Google Scholar] [CrossRef]
|
|
[33]
|
Kuhn, K.A. and Stappenbeck, T.S. (2013) Peripheral Education of the Immune System by the Colonic Microbiota. Seminars in Immunology, 25, 364-369. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Gareau, M.G., Wine, E., Rodrigues, D.M., et al. (2011) Bacterial Infection Causes Stress-Induced Memory Dysfunction in Mice. Gut, 60, 307-317. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Lewis, S. and Cochrane, S. (2007) Alteration of Sulfate and Hydro-gen Metabolism in the Human Colon by Changing Intestinal Transit Rate. The American Journal of Gastroenterology, 102, 624-633. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Tillisch, K., Labus, J., Kilpatrick, L., et al. (2013) Con-sumption of Fermented Milk Product with Probiotic Modulates Brain Activity. Gastroenterology, 144, 1394-1401. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Messaoudi, M., Lalonde, R., Violle, N., et al. (2011) Assessment of Psychotropic-Like Properties of a Probiotic Formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in Rats and Human Subjects. The British Journal of Nutrition, 105, 755-764. [Google Scholar] [CrossRef]
|
|
[38]
|
Sudo, N., Chida, Y., Aiba, Y., et al. (2004) Postnatal Microbial Colonization Programs the Hypothalamic-Pituitary-Adrenal System for Stress Response in Mice. The Journal of Physi-ology, 558, 263-275. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Alverdy, J., Holbaook, C., Rocha, F., et al. (2000) Gut-Derived Sepsis Occurs When the Right Pathogen with the Right Virulence Genes Meets the Right Host: Evidence for in Vivo Vir-ulence Expression in Pseudomonas aeruginosa. Annals of Surgery, 232, 480-489. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Demaude, J., Salvador-Cartier, C., Fioramonti, J., et al. (2006) Phenotypic Changes in Colonocytes Following Acute Stress or Activation of Mast Cells in Mice: Implications for Delayed Epithelial Barrier Dysfunction. Gut, 55, 655-661. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Bailey, M.T. and Coe, C.L. (1999) Maternal Separation Disrupts the Integrity of the Intestinal Microflora in Infant Rhesus Monkeys. Developmental Psychobiology, 35, 146-155. [Google Scholar] [CrossRef]
|
|
[42]
|
Dubinkina, V.B., Tyakht, A.V., Ilina, E.N., et al. (2015) Metagenomic Analysis of Taxonomic and Functional Changes in Gut Microbiota of Patients with Alcoholic Dependence Syndrome. Biomeditsinskaia Khimiia, 61, 742-749. [Google Scholar] [CrossRef]
|
|
[43]
|
Mutlu, E.A., Gillevet, P.M., Rangwala, H., et al. (2012) Colon-ic Microbiome Is Altered in Alcoholism. American Journal of Physiology Gastrointestinal and Liver Physiology, 302, G966-G978. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Kosnicki, K.L., Penprase, J.C., Cintora, P., et al. (2019) Effects of Moderate, Voluntary Ethanol Consumption on the Rat and Human Gut Microbiome. Addiction Biology, 24, 617-630. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Leclercq, S., Matamoros, S., Cani, P.D., et al. (2014) Intestinal Permeabil-ity, Gut-Bacterial Dysbiosis, and Behavioral Markers of Alcohol-Dependence Severity. Proceedings of the National Academy of Sciences of the United States of America, 111, E4485-4493. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Bjorkhaug, S.T., Aanes, H., Neupane, S.P., et al. (2019) Character-ization of Gut Microbiota Composition and Functions in Patients with Chronic Alcohol Overconsumption. Gut Microbes, 10, 663-675. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Donnadieu-Rigole, H., Pansu, N., Mura, T., et al. (2018) Beneficial Effect of Alcohol Withdrawal on Gut Permeability and Microbial Translocation in Patients with Alcohol Use Disorder. Alcoholism, Clinical and Experimental Research, 42, 32-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Barr, T., Lewis, S.A., Sureshchandra, S., et al. (2019) Chronic Ethanol Consumption Alters Lamina Propria Leukocyte Response to Stimulation in a Region-Dependent Manner. FASEB Jour-nal, 33, 7767-7777. [Google Scholar] [CrossRef]
|
|
[49]
|
Hillemacher, T., Bachmann, O., Kahl, K.G., et al. (2018) Alcohol, Mi-crobiome, and Their Effect on Psychiatric Disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 85, 105-115. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Leclercq, S., Cani, P.D., Neyrinck, A.M., et al. (2012) Role of Intestinal Permeability and Inflammation in the Biological and Behavioral Control of Alcohol-Dependent Subjects. Brain, Behavior, and Immunity, 26, 911-918. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Leclercq, S., De Saeger, C., Delzenme, N., et al. (2014) Role of In-flammatory Pathways, Blood Mononuclear Cells, and Gut-Derived Bacterial Products in Alcohol Dependence. Biological Psychiatry, 76, 725-733. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Zhou, C., Zhao, J., Li, J., et al. (2013) Acute Ethanol Admin-istration Inhibits Toll-Like Receptor 4 Signaling Pathway in Rat Intestinal Epithelia. Alcohol (Fayetteville, NY), 47, 231-239. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Bishehsari, F., Magno, E., Swanson, G., et al. (2017) Alcohol and Gut-Derived Inflammation. Alcohol Research, 38, 163-171.
|
|
[54]
|
Hoyt, L.R., Randall, M.J., Ather, J.L., et al. (2017) Mitochondrial ROS Induced by Chronic Ethanol Exposure Promote Hyper-Activation of the NLRP3 Inflam-masome. Redox Biology, 12, 883-896. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Amaral, F.A., Costa, V.V., Tavares, L.D., et al. (2012) NLRP3 Inflammasome-Mediated Neutrophil Recruitment and Hypernociception Depend on Leukotriene B(4) in a Murine Model of Gout. Arthritis & Rheumatology, 64, 474-484. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Wen, H., Gris, D., Lei, Y., et al. (2011) Fatty Acid-Induced NLRP3-ASC Inflammasome Activation Interferes with Insulin Signaling. Nature Immunology, 12, 408-415. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Kanak, M.A., Shahbazov, R., Yoshimatsu, G., et al. (2017) A Small Molecule Inhibitor of NFkappaB Blocks ER Stress and the NLRP3 Inflammasome and Prevents Progression of Pancreatitis. Journal of Gastroenterology, 52, 352-365. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Lu, Y.C., Yeh, W.C. and Ohashi, P.S. (2008) LPS/TLR4 Signal Transduction Pathway. Cytokine, 42, 145-151. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Takada, H. and Uehara, A. (2006) Enhancement of TLR-Mediated Innate Immune Responses by Peptidoglycans through NOD Signaling. Current Pharmaceutical Design, 12, 4163-4172. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Leclercq, S., Le Roy, T., Furgiuele, S., et al. (2020) Gut Mi-crobiota-Induced Changes in beta-Hydroxybutyrate Metabolism Are Linked to Altered Sociability and Depression in Al-cohol Use Disorder. Cell Reports, 33, Article ID: 108238. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Lowe, P.P., Gyongyosi, B., Satishchandran, A., et al. (2017) Alcohol-Related Changes in the Intestinal Microbiome Influence Neutrophil Infiltration, Inflammation and Steatosis in Early Alcoholic Hepatitis in Mice. PLoS ONE, 12, e0174544. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Boschloo, L., Vogelzangs, N., Van Den Brink, W., et al. (2013) Depressive and Anxiety Disorders Predicting First Incidence of Alcohol Use Disorders: Results of the Netherlands Study of Depression and Anxiety (NESDA). Journal of Clinical Psychiatry, 74, 1233-1240. [Google Scholar] [CrossRef]
|
|
[63]
|
Mellentin, A.I., Nielsen, B., Stenager, E., et al. (2015) The Effect of Co-Morbid Depression and Anxiety on the Course and Outcome of Alcohol Outpatient Treatment: A Naturalistic Prospective Cohort Study. Nordic Journal of Psychiatry, 69, 331-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Clarke, G., Grenham, S., Scully, P., et al. (2013) The Microbiome-Gut-Brain Axis during Early Life Regulates the Hippocampal Serotonergic System in a Sex-Dependent Manner. Molecular Psychiatry, 18, 666-673. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Xiao, H.W., Ge, C., Feng, G.X., et al. (2018) Gut Microbiota Modulates Alcohol Withdrawal-Induced Anxiety in Mice. Toxicology Letters, 287, 23-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Xu, Z., Liu, Z., Dong, X., et al. (2018) Fecal Microbiota Transplantation from Healthy Donors Reduced Alcohol-Induced Anxiety and Depression in an Animal Model of Chronic Alcohol Exposure. The Chinese Journal of Physiology, 61, 360-371.
|