|
[1]
|
Dalbeth, N., Choi, H.K., Joosten, L., et al. (2019) Gout. Nature Reviews Disease Primers, 5, Article No. 69. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Singh, J.A. and Gaffo, A. (2020) Gout Epidemiology and Comorbidities. Seminars in Arthritis and Rheumatism, 50, S11-S16. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wang, H., Lu, Y., Yan, Y., et al. (2019) Promising Treatment for Type 2 Diabetes: Fecal Microbiota Transplantation Reverses Insulin Resistance and Impaired Islets. Frontiers in Cellular and Infection Microbiology, 9, Article No. 455. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Dehlin, M., Jacobsson, L. and Roddy, E. (2020) Global Epidemiology of Gout: Prevalence, Incidence, Treatment Patterns and Risk Factors. Nature Reviews Rheumatology, 16, 380-390. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Schwabe, R.F. and Greten, T.F. (2020) Gut Microbiome in HCC-Mechanisms, Diagnosis and Therapy. Journal of Hepatology, 72, 230-238. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Xing, S.C., Meng, D.M., Chen, Y., et al. (2015) Study on the Diversity of Bacteroides and Clostridium in Patients with Primary Gout. Cell Biochemistry and Biophysics, 71, 707-715. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Guo, Z., Zhang, J.C., Wang, Z.L., et al. (2016) Intestinal Microbiota Distinguish Gout Patients from Healthy Humans. Scientific Reports, 6, Article No. 20602. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Shao, T.J., Shao, L., Li, H.C., et al. (2017) Combined Signature of the Fecal Microbiome and Metabolome in Patients with Gout. Frontiers in Microbiology, 8, Article No. 268. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yu, Y.R., Liu, Q.P., Li, H.C., et al. (2018) Alterations of the Gut Microbiome Associated with the Treatment of Hyperuricaemia in Male Rats. Frontiers in Microbiology, 9, Article No. 2233. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Mendez-Salazar, E.O., Vazquez-Mellado, J., Casimiro-Soriguer, C.S., et al. (2021) Taxonomic Variations in the Gut Microbiome of Gout Patients with and without Tophi Might Have a Functional Impact on Urate Metabolism. Molecular Medicine, 27, Article No. 50. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Chu, Y.L., Sun, S.L., Huang, R.Y., et al. (2021) Metagenomic Analysis Revealed the Potential Role of Gut Microbiome in Gout. npj Biofilms and Microbiomes, 7, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wang, P.X., Deng, X.R., Zhang, C.H., et al. (2020) Gut Microbiota and Metabolic Syndrome. Chinese Medical Journal, 133, 808-816. [Google Scholar] [CrossRef]
|
|
[13]
|
聂秀玲. 长期果糖摄入与代谢综合征[J]. 国际内分泌代谢杂志, 2018, 38(5): 339-342.
|
|
[14]
|
Bray, G.A. (2013) Energy and Fructose from Beverages Sweetened with Sugar or High-Fructose Corn Syrup Pose a Health Risk for Some People. Advances in Nutrition, 4, 220-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
黄胜男, 林志健, 张冰, 等. 高尿酸血症鹌鹑肠道菌群结构分析[J]. 中国实验动物学报, 2020, 28(1): 17-22.
|
|
[16]
|
Wang, H.N., Mei, L., Deng, Y., et al. (2019) Lactobacillus brevis DM9218 Ameliorates Fructose-Induced Hyperuricemia through Inosine Degradation and Manipulation of Intestinal Dysbiosis. Nutrition, 62, 63-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Chiaro, T.R., Soto, R., Stephens, W.Z., et al. (2017) A Member of the Gut Mycobiota Modulates Host Purine Metabolism Exacerbating Colitis in Mice. Science Translational Medicine, 9, 380. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Li, M., Yang, D.B., Mei, L., et al. (2014) Screening and Characterization of Purine Nucleoside Degrading Lactic Acid Bacteria Isolated from Chinese Sauerkraut and Evaluation of the Serum Uric Acid Lowering Effect in Hyperuricemic Rats. PLoS ONE, 9, e105577. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wu, Y., Ye, Z., Feng, P., et al. (2021) Limosilactobacillus fermentum JL-3 Isolated from “Jiangshui” Ameliorates Hyperuricemia by Degrading Uric Acid. Gut Microbes, 13, Article ID: 1897211. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Nigam, S.K. and Bhatnagar, V. (2018) The Systems Biology of Uric Acid Transporters. Current Opinion in Nephrology and Hypertension, 27, 305-313. [Google Scholar] [CrossRef]
|
|
[21]
|
Fujita, K. and Ichida, K. (2018) ABCG2 as a Therapeutic Target Candidate for Gout. Expert Opinion on Therapeutic Targets, 22, 123-129. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wrigley, R., Phipps-Green, A.J., Topless, R.K., et al. (2020) Pleiotropic Effect of the ABCG2 Gene in Gout: Involvement in Serum Urate Levels and Progression from Hyperuricemia to Gout. Arthritis Research & Therapy, 22, Article No. 45. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Eckenstaler, R. and Benndorf, R.A. (2021) The Role of ABCG2 in the Pathogenesis of Primary Hyperuricemia and Gout-An Update. International Journal of Molecular Sciences, 22, Article No. 6678. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Hoque, K.M., Dixon, E.E., Lewis, R.M., et al. (2020) The ABCG2 Q141K Hyperuricemia and Gout Associated Variant Illuminates the Physiology of Human Urate Excretion. Nature Communications, 11, Article No. 2767. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wang, Y., Lin, Z.J., Zhang, B., et al. (2017) Cichorium intybus L. Promotes Intestinal Uric Acid Excretion by Modulating ABCG2 in Experimental Hyperuricemia. Nutrition & Metabolism, 14, Article No. 38. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
周蓓蓓, 魏华. 高尿酸血症与肠道菌群的相关性[J]. 中华临床免疫和变态反应杂志, 2020, 14(1): 76-80.
|
|
[27]
|
Luo, Q.H., Cheng, D.J., Huang, C., et al. (2019) Improvement of Colonic Immune Function with Soy Isoflavones in High-Fat Diet-Induced Obese Rats. Molecules, 24, Article No. 1139. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
金钗, 徐明智. 肠道菌群与高尿酸血症及痛风的相关性研究[J]. 中国微生态学杂志, 2019, 31(8): 980-984.
|
|
[29]
|
Maslowski, K.M., Vieira, A.T., Ng, A., et al. (2009) Regulation of Inflammatory Responses by Gut Microbiota and Chemoattractant Receptor GPR43. Nature, 461, 1282-1286. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Vieira, A.T., Galvao, I., Macia, L.M., et al. (2017) Dietary Fiber and the Short-Chain Fatty Acid Acetate Promote Resolution of Neutrophilic Inflammation in a Model of Gout in Mice. Journal of Leukocyte Biology, 101, 275-284. [Google Scholar] [CrossRef]
|
|
[31]
|
Henson, M.A. (2021) Interrogation of the Perturbed Gut Microbiota in Gouty Arthritis Patients through in Silico Metabolic Modeling. Engineering in Life Sciences, 21, 489-501. [Google Scholar] [CrossRef] [PubMed]
|