|
[1]
|
Ponce, R. (2016) Existence of Mild Solutions to Nonlocal Fractional Cauchy Problems via Compactness. Abstract and Applied Analysis, 2016, Article ID: 4567092. [Google Scholar] [CrossRef]
|
|
[2]
|
Brill, H. (1977) A Semilinear Sobolev Evolution Equation in Banach Space. Journal of Differ- ential Equations, 24, 412-425. [Google Scholar] [CrossRef]
|
|
[3]
|
Showalter, R.E. (1972) Existence and Representation Theorems for a Semilinear Sobolev E- quation in Banach Space. SIAM Journal on Mathematical Analysis, 3, 527-543. [Google Scholar] [CrossRef]
|
|
[4]
|
Mahmudov, N.I. (2014) Existence and Approximate Controllability of Sobolev Type Frac- tional Stochastic Evolution Equations. Bulletin of the Polish Academy of Sciences: Technical Sciences, 62, 205-215. [Google Scholar] [CrossRef]
|
|
[5]
|
Benchaabane, A. and Sakthivel, R. (2017) Sobolev-Type Fractional Stochastic Differential E- quations with Non-Lipschitz Coefficients. Journal of Computational and Applied Mathematics, 312, 65-73. [Google Scholar] [CrossRef]
|
|
[6]
|
Yang, H. (2020) Existence Results of Mild Solutions for the Fractional Stochastic Evolution Equations of Sobolev Type. Symmetry, 12, Article 1031. [Google Scholar] [CrossRef]
|
|
[7]
|
Ahmed, H.M. (2017) Sobolev-Type Fractional Stochastic Integrodifferential Equations with
Nonlocal Conditions in Hilbert Space. Journal of Theoretical Probability, 30, 771-783.[CrossRef]
|
|
[8]
|
Chang, Y.K., Pereira, A. and Ponce, R. (2017) Approximate Controllability for Fractional Dif- ferential Equations of Sobolev Type via Properties on Resolvent Operators. Fractional Calculus and Applied Analysis, 20, 963-987. [Google Scholar] [CrossRef]
|
|
[9]
|
Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential E- quations. Springer-Verlag, New York.
|
|
[10]
|
Chang, Y.K., Pei, Y.T. and Ponce, R. (2019) Existence and Optimal Controls for Fractional Stochastic Evolution Equations of Sobolev Type via Fractional Resolvent Operators. Journal of Optimization Theory and Applications, 90, 558-572. [Google Scholar] [CrossRef]
|
|
[11]
|
Kamenskii, M., Obukhovskii, V. and Zecca, P. (2001) Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. De Gruyter, Berlin. [Google Scholar] [CrossRef]
|
|
[12]
|
郭大钧, 孙经先. 抽象空间常微分方程[M]. 第2版. 济南: 山东科学技术出版社, 2005.
|
|
[13]
|
Ichikawa, A. (1982) Stability of Semilinear Stochastic Evolution Equations. Journal of Mathe- matical Analysis and Applications, 90, 12-44. [Google Scholar] [CrossRef]
|
|
[14]
|
Yang, H. and Zhao, Y.J. (2020) Controllability of Fractional Evolution Systems of Sobolev Type via Resolvent Operators. Boundary Value Problem, 2020, Article No. 119. [Google Scholar] [CrossRef]
|