|
[1]
|
Wang, Y.K., Yang, D.Z., Ma, D.G., Kim, D.H., Ahamad, T., Alshehri, S.M. and Vadim, A. (2018) Organic-Inorganic Hybrid Sn-Based Perovskite Photodetectors with High External Quantum Efficiencies and Wide Spectral Responses from 300 to 1000 nm. Science China Materials, 62, 790-796. [Google Scholar] [CrossRef]
|
|
[2]
|
Aftab, A. and Ahmad, M.I. (2021) A Review of Stability and Progress in Tin Halide Perovskite Solar Cell. Solar Energy, 216, 26-47. [Google Scholar] [CrossRef]
|
|
[3]
|
Hameed, M.S.N.S. and Aziz, F. (2021) Solvent Engineering of Lead-Free Bismuth-Based Perovskite Material for Potential Application of Solar Cell. Materials Today: Proceedings, 46, 1837-1842. [Google Scholar] [CrossRef]
|
|
[4]
|
Ganose, A.M., Butler, K.T., Walsh, A. and Scanlon, D.O. (2016) Relativistic Electronic Structure and Band Alignment of BiSI and BiSeI: Candidate Photovoltaic Materials. Journal of Materials Chemistry A, 4, 2060-2068. [Google Scholar] [CrossRef]
|
|
[5]
|
Ganose, A.M., Matsumoto, S., Buckeridge, J. and Scanlon, D.O. (2018) Defect Engineering of Earth-Abundant Solar Absorbers BiSI and BiSeI. Chemistry of Materials, 30, 3827-3835. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Shi, H.L., Ming, W.M. and Du, M.H. (2016) Bismuth Chal-cohalides and Oxyhalides as Optoelectronic Materials. Physical Review B, 93, Article ID: 104108. [Google Scholar] [CrossRef]
|
|
[7]
|
Hahn, N.T., Rettie, A.J.E., Beal, S.K., Fullon, R.R. and Mullins, C.B. (2012) n-BiSI Thin Films: Selenium Doping and Solar Cell Behavior. The Journal of Physical Chemistry C, 116, 24878-24886. [Google Scholar] [CrossRef]
|
|
[8]
|
Tiwari, D., Cardoso-Delgado, F., Alibhai, D., Mombrú, M. and Fermín, D.J. (2019) Photovoltaic Performance of PhasePure Orthorhombic BiSI Thin Films. ACS Applied Energy Materials, 2, 3878-3885. [Google Scholar] [CrossRef]
|
|
[9]
|
Xiong J.S., You, Z.T., Lei, S.J., Zhao, K.H., Bian, Q.H., Xiao, Y.H. and Cheng, B.C.(2020) Solution Growth of BiSI Nanorod Arrays on Tungsten Substrate for Solar Cell Application. ACS Sustainable Chemistry & Engineering, 8, 13488-13496. [Google Scholar] [CrossRef]
|
|
[10]
|
Yoo, B., Ding, D., Beloqui, J.M.M., Lanzetta, L., Bu, X.N., Rath, T. and Haque, S.A. (2019) Improved Charge Separation and Photovoltaic Performance of BiI3 Absorber Layers by Use of an In Situ Formed BiSI Interlayer. ACS Applied Energy Materials, 2, 7056-7061. [Google Scholar] [CrossRef]
|
|
[11]
|
Aguiar, I., Mombrú, M., Barthaburu, M.P., Pereira, H.B. and Fornaro, L. (2016) Influence of Solvothermal Synthesis Conditions in BiSI Nanostructures for Appli-cation in Ionizing Radiation Detectors. Materials Research Express, 3, Article ID: 025012. [Google Scholar] [CrossRef]
|
|
[12]
|
Fa, W.J., Li, P.J., Zhang, Y.J., Guo, L.L., Guo, J.F. and Yang, F.L. (2011) The Competitive Growth of BiOI and BiSI in the Solvothermal Process. Advanced Materials Research, 236-238, 1919-1922. [Google Scholar] [CrossRef]
|
|
[13]
|
Murtaza, S.Z.M. and Vaqueiro, P. (2020) Rapid Synthesis of Chalcohalides by Ball Milling: Preparation and Characterisation of BiSI and BiSeI. Journal of Solid State Chemistry, 291, Article ID: 121625. [Google Scholar] [CrossRef]
|
|
[14]
|
Li, Z., Zhang, Q., Wu, L., Gu, W. and Liu, Y. (2019) Rapid Com-munication Mechanochemical Synthesis of BiSI and Bi19S27I3 Semiconductor Materials. Advanced Powder Technology, 30, 1985-1988. [Google Scholar] [CrossRef]
|
|
[15]
|
Audzijonis, A., Žaltauskas, R., Sereika, R., Žigas, L. and Rėza, A. (2010) Electronic Structure and Optical Properties of BiSI Crystal. Journal of Physics and Chemistry of Solids, 6, 884-891. [Google Scholar] [CrossRef]
|
|
[16]
|
Ou, Z.H., Yi, Y.S., Hu, Z.T., Zhu, J.J., Wang, W.Z., Meng, H., Zhang, X.Z., Jing, S.Q., Xu, S.H., Hong, F., Huang, J., Qin, J., Xu, F., Xu, R., Zhu, Y.Y. and Wang, L.J. (2019) Improvement of CsPbBr3 Photodetector Performance by Tuning the Morphology with PMMA Additive. Journal of Alloys and Compounds, 821, Article ID: 153344. [Google Scholar] [CrossRef]
|
|
[17]
|
Dhanabalan, S.C., Ponraj, J.S., Zhang, H. and Bao, Q.L. (2016) Present Perspectives of Broadband Photodetectors Based on Nanobelts, Nanoribbons, Nanosheets and the Emerging 2D Materials. Nanoscale, 8, 6410-6434. [Google Scholar] [CrossRef]
|
|
[18]
|
Li, M.Q., Dang, L.Y., Wang, G.G., Li, F., Han, M., Wu, Z.-P., Li, G.Z., Liu, Z. and Han, J.C. (2020) Bismuth Oxychalcogenide Nanosheet: Facile Synthesis, Characterization, and Photodetector Application. Advanced Materials Technologies, 5, Article ID: 2000180. [Google Scholar] [CrossRef]
|
|
[19]
|
Gödela, K.C. and Steiner, U. (2016) Thin Film Synthesis of SbSI Micro-Crystals for Self-Powered Photodetectors with Rapid Time Response. Nanoscale, 8, 15920-15925. [Google Scholar] [CrossRef]
|
|
[20]
|
Wang, H.R., Chen, G.H., Xu, J.H., Xu, Y.P. and Yang, Q. (2018) Ef-fective Synthesis of Pb5S2I6 Crystals at Low Temperature for Fabrication of a High Performance Photodetector. Crystal Growth & Design, 18, 1987-1994. [Google Scholar] [CrossRef]
|
|
[21]
|
Ouyang, W.X., Chen, J.X., He, J.H. and Fang, X.S. (2020) Im-proved Photoelectric Performance of UV Photodetector Based on ZnO Nanoparticle-Decorated BiOCl Nanosheet Arrays onto PDMS Substrate: The Heterojunction and Ti3C2Tx MXene Conduction Layer. Advanced Electronic Materials, 6, Article ID: 2000168. [Google Scholar] [CrossRef]
|
|
[22]
|
Wei, Q., Chen, J.H., Ding, P., Shen, B., Yin, J., Xu, F., Xia, Y.D. and Liu, Z.G. (2018) Synthesis of Easily Transferred 2D Layered BiI3 Nanoplates for Flexible Visible-Light Photodetec-tors. ACS Applied Materials & Interfaces, 10, 21527-21533. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wei, Q., Wang, Y.R., Yin, J., Xia, Y.D. and Liu, Z.G. (2019) High-Performance Visible-Light Photodetectors Built on 2D-Nanoplate-Assembled Large-Scale BiI3 Films. Advanced Electronic Materials, 5, Article ID: 1900159. [Google Scholar] [CrossRef]
|