|
[1]
|
Xue, Q., Wang, R., Wang, L., et al. (2021) Downregulating the P2X3 Receptor in the Carotid Body to Reduce Blood Pressure via Acoustic Gene Delivery in Canines. Translational Research, 227, 30-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Marshall, J.M. (1994) Peripheral Chemoreceptors and Cardiovascular Regulation. Physiological Reviews, 74, 543-594. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ortega-Saenz, P. and Lopez-Barneo, J. (2020) Physiology of the Carotid Body: From Molecules to Disease. Annual Review of Physiology, 82, 127-149. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Paton, J.F., Sobotka, P.A., Fudim, M., et al. (2013) The Carotid Body as a Therapeutic Target for the Treatment of Sympathetically Mediated Diseases. Hypertension, 61, 5-13. [Google Scholar] [CrossRef]
|
|
[5]
|
Brognara, F., Felippe, I., Salgado, H.C., et al. (2021) Autonomic Innervation of the Carotid Body as a Determinant of Its Sensitivity: Implications for Cardiovascular Physiology and Pathology. Cardiovascular Research, 117, 1015-1032. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Pijacka, W., Moraes, D.J., Ratcliffe, L.E., et al. (2016) Purinergic Receptors in the Carotid Body as a New Drug Target for Controlling Hypertension. Nature Medicine, 22, 1151-1159. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Prabhakar, N.R., Peng, Y.J., Yuan, G., et al. (2018) Reactive Oxygen Radicals and Gaseous Transmitters in Carotid Body Activation by Intermittent Hypoxia. Cell and Tissue Research, 372, 427-431. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Prabhakar, N.R. and Peers, C. (2014) Gasotransmitter Regulation of Ion Channels: A Key Step in O2 Sensing by the Carotid Body. Physiology (Bethesda), 29, 49-57. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Fung, M.L. (2014) Pathogenic Roles of the Carotid Body Inflammation in Sleep Apnea. Mediators of Inflammation, 2014, Article ID: 354279. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
McDonald, D.M. (1983) A Morphometric Analysis of Blood Vessels and Perivascular Nerves in the Rat Carotid Body. Journal of Neurocytology, 12, 155-199. [Google Scholar] [CrossRef]
|
|
[11]
|
De Burgh Daly, M. (1997) Peripheral Arterial Chemoreceptors and Respiratory-Cardiovascular Integration. Clarendon Press, Oxford, 739.
|
|
[12]
|
Ichikawa, H. (2002) Innervation of the Carotid Body: Immunohistochemical, Denervation, and Retrograde Tracing Studies. Microscopy Research and Technique, 59, 188-195. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
McDonald, D.M. (1983) Morphology of the Rat Carotid Sinus Nerve. I. Course, Connections, Dimensions and Ultrastructure. Journal of Neurocytology, 12, 345-372. [Google Scholar] [CrossRef]
|
|
[14]
|
O’Regan, R.G. (1977) Control of Carotid Body Chemoreceptors by Autonomic Nerves. Irish Journal of Medical Science, 146, 199-205. [Google Scholar] [CrossRef]
|
|
[15]
|
Berger, A.J. (1980) The Distribution of the Cat’s Carotid Sinus Nerve Afferent and Efferent Cell Bodies Using the Horseradish Peroxidase Technique. Brain Research, 190, 309-320. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Campanucci, V.A. and Nurse, C.A. (2007) Autonomic Innervation of the Carotid Body: Role in Efferent Inhibition. Respiratory Physiology & Neurobiology, 157, 83-92. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Floyd, W.F. and Neil, E. (1952) The Influence of the Sympathetic Innervation of the Carotid Bifurcation on Chemoceptor and Baroceptor Activity in the Cat. Archives Internationales de Pharmacodynamie et de Therapie, 91, 230-239.
|
|
[18]
|
De Burgh, D.M., Lambertsen, C.J. and Schweitzer, A. (1954) Observations on the Volume of Blood Flow and Oxygen Utilization of the Carotid Body in the Cat. The Journal of Physiology, 125, 67-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Folgering, H., Ponte, J., Sadig, T. (1982) Adrenergic Mechanisms and Chemoreception in the Carotid Body of the Cat and Rabbit. The Journal of Physiology, 325, 1-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
O’Regan, R.G. (1981) Responses of Carotid Body Chemosensory Activity and Blood Flow to Stimulation of Sympathetic Nerves in the Cat. The Journal of Physiology, 315, 81-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lei, S. (2014) Cross Interaction of Dopaminergic and Adrenergic Systems in Neural Modulation. International Journal of Physiology, Pathophysiology and Pharmacology, 6, 137-142.
|
|
[22]
|
Andrade, D.C., Lucero, C., Toledo, C., et al. (2015) Relevance of the Carotid Body Chemoreflex in the Progression of Heart Failure. BioMed Research International, 2015, Article ID: 467597. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Conde, S.V., Sacramento, J.F. and Guarino, M.P. (2018) Carotid Body: A Metabolic Sensor Implicated in Insulin Resistance. Physiological Genomics, 50, 208-214. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Iturriaga, R. (2018) Translating Carotid Body Function into Clinical Medicine. The Journal of Physiology, 596, 3067-3077. [Google Scholar] [CrossRef]
|
|
[25]
|
Iturriaga, R., Del, R.R., Idiaquez, J., et al. (2016) Carotid Body Chemoreceptors, Sympathetic Neural Activation, and Cardiometabolic Disease. Biological Research, 49, 13. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
McBryde, F.D., Abdala, A.P., Hendy, E.B., et al. (2013) The Carotid Body as a Putative Therapeutic Target for the Treatment of Neurogenic Hypertension. Nature Communications, 4, Article No. 2395. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Niewinski, P. (2017) Carotid Body Modulation in Systolic Heart Failure from the Clinical Perspective. The Journal of Physiology, 595, 53-61. [Google Scholar] [CrossRef]
|
|
[28]
|
Schultz, H.D., Marcus, N.J. and Del, R.R. (2013) Role of the Carotid Body in the Pathophysiology of Heart Failure. Current Hypertension Reports, 15, 356-362. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Del, R.R., Moya, E.A. and Iturriaga, R. (2010) Carotid Body and Cardiorespiratory Alterations in Intermittent Hypoxia: The Oxidative Link. European Respiratory Journal, 36, 143-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Li, H.P., Wang, H.Q., Li, N., et al. (2021) Model for Identifying High Carotid Body Chemosensitivity in Patients with Obstructive Sleep Apnea. Nature and Science of Sleep, 13, 493-501. [Google Scholar] [CrossRef]
|
|
[31]
|
Shimoda, L.A. and Semenza, G.L. (2011) HIF and the Lung: Role of Hypoxia-Inducible Factors in Pulmonary Development and Disease. American Journal of Respiratory and Critical Care Medicine, 183, 152-156. [Google Scholar] [CrossRef]
|
|
[32]
|
Rey, S., Del, R.R. and Iturriaga, R. (2006) Contribution of Endothelin-1 to the Enhanced Carotid Body Chemosensory Responses Induced by Chronic Intermittent Hypoxia. Brain Research, 1086, 152-159. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Prabhakar, N.R. and Semenza, G.L. (2016) Regulation of Carotid Body Oxygen Sensing by Hypoxia-Inducible Factors. Pflügers Archiv, 468, 71-75. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Peng, Y.J. and Prabhakar, N.R. (2003) Reactive Oxygen Species in the Plasticity of Respiratory Behavior Elicited by Chronic Intermittent Hypoxia. Journal of Applied Physiology (1985), 94, 2342-2349. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Peng, Y.J. and Prabhakar, N.R. (2004) Effect of Two Paradigms of Chronic Intermittent Hypoxia on Carotid Body Sensory Activity. Journal of Applied Physiology (1985), 96, 1236-1242, 1196. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Tan, J., Xiong, B., Zhu, Y., et al. (2019) Carotid Body Enlargement in Hypertension and Other Comorbidities Evaluated by Ultrasonography. Journal of Hypertension, 37, 1455-1462. [Google Scholar] [CrossRef]
|
|
[37]
|
Schultz, H.D. (2011) Angiotensin and Carotid Body Chemoreception in Heart Failure. Current Opinion in Pharmacology, 11, 144-149. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zucker, I.H., Schultz, H.D., Li, Y.F., et al. (2004) The Origin of Sympathetic Outflow in Heart Failure: The Roles of Angiotensin II and Nitric Oxide. Progress in Biophysics &Molecular Biology, 84, 217-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Iturriaga, R., Alcayaga, J., Chapleau, M.W., et al. (2021) Carotid Body Chemoreceptors: Physiology, Pathology, and Implications for Health and Disease. Physiological Reviews, 101, 1177-1235. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Moraes, D., Da, S.M., Spiller, P.F., et al. (2018) Purinergic Plasticity within Petrosal Neurons in Hypertension. The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 315, R963-R971. [Google Scholar] [CrossRef] [PubMed]
|