|
[1]
|
Rabe, K.F. and Watz, H. (2017) Chronic Obstructive Pulmonary Disease. Lancet, 389, 1931-1940. [Google Scholar] [CrossRef]
|
|
[2]
|
Bartal, M. (2005) COPD and Tobacco Smoke. Monaldi Archives for Chest Disease, 63, 213-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Hogg, J.C. and Timens, W. (2009) The Pathology of Chronic Obstructive Pulmonary Disease. Annual Review of Pathology: Mechanisms of Disease, 4, 435-459. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
宋斯佳, 罗淼. 自噬在呼吸系统疾病中的研究进展[J]. 世界最新医学信息文摘, 2019, 19(78): 38-39. [Google Scholar] [CrossRef]
|
|
[5]
|
Chen, Z.H., Kim, H.P., Sciurba, F.C., Lee, S.J., Feghali-Bostwick, C., Stolz, D.B., Dhir, R., Landreneau, R.J., Schuchert, M.J., Yousem, S.A., Nakahira, K., Pilewski, J.M., Lee, J.S., Zhang, Y., Ryter, S.W. and Choi, A.M. (2008) Egr-1 Regulates Autophagy in Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease. PLoS ONE, 3, e3316. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Jha, P., Ramasundarahettige, C., Landsman, V., Rostron, B., Thun, M., Anderson, R.N., McAfee, T. and Peto, R. (2013) 21st-Century Hazards of Smoking and Benefits of Cessation in the United States. New England Journal of Medicine, 368, 341-350. [Google Scholar] [CrossRef]
|
|
[7]
|
Valavanidis, A., Vlachogianni, T. and Fiotakis, K. (2009) Tobacco Smoke: Involvement of Reactive Oxygen Species and Stable Free Radicals in Mechanisms of Oxidative Damage, Carcinogenesis and Synergistic Effects with Other Respirable Particles. International Journal of Environmental Research and Public Health, 6, 445-462. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Aghapour, M., Raee, P., Moghaddam, S.J., Hiemstra, P.S. and Heijink, I.H. (2018) Airway Epithelial Barrier Dysfunction in Chronic Obstructive Pulmonary Disease: Role of Cigarette Smoke Exposure. American Journal of Respiratory Cell and Molecular Biology, 58, 157-169. [Google Scholar] [CrossRef]
|
|
[9]
|
Arnson, Y., Shoenfeld, Y. and Amital, H. (2010) Effects of Tobacco Smoke on Immunity, Inflammation and Autoimmunity. Journal of Autoimmunity, 34, J258-J265. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ouyang, W., Rutz, S., Crellin, N.K., Valdez, P.A. and Hymowitz, S.G. (2011) Regulation and Functions of the IL-10 Family of Cytokines in Inflammation and Disease. Annual Review of Immunology, 29, 71-109. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lawrence, T. (2009) The Nuclear Factor NF-κB Pathway in Inflammation. Cold Spring Harbor Perspectives in Biology, 1, Article ID: a001651. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ahn, K.S. and Aggarwal, B.B. (2005) Transcription Factor NF-κB: A Sensor for Smoke and Stress Signals. Annals of the New York Academy of Sciences, 1056, 218-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Rahman, I. (2002) Oxidative Stress and Gene Transcription in Asthma and Chronic Obstructive Pulmonary Disease: Antioxidant Therapeutic Targets. Current Drug Targets: Inflammation & Allergy, 1, 291-315. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Levine, B. and Kroemer, G. (2008) Autophagy in the Pathogenesis of Disease. Cell, 132, 27-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Cao, W., Li, J., Yang, K. and Cao, D. (2021) An Overview of Autophagy: Mechanism, Regulation and Research Progress. Bulletin du Cancer, 108, 304-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kang, S., Shin, K.D., Kim, J.H. and Chung, T. (2018) Autophagy-Related (ATG) 11, ATG9 and the Phosphatidylinositol 3-Kinase Control ATG2-Mediated Formation of Autophagosomes in Arabidopsis. Plant Cell Reports, 37, 653-664. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Stavoe, A.K.H. and Holzbaur, E.L.F. (2020) Neuronal Autophagy Declines Substantially with Age and Is Rescued by Overexpression of WIPI2. Autophagy, 16, 371-372. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ghosh, A.K., Mau, T., O’Brien, M., Garg, S. and Yung, R. (2016) Impaired Autophagy Activity Is Linked to Elevated ER-Stress and Inflammation in Aging Adipose Tissue. Aging, 8, 2525-2537. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Oshima, M., Seki, T., Kurauchi, Y., Hisatsune, A. and Katsuki, H. (2019) Reciprocal Regulation of Chaperone-Mediated Autophagy/Microautophagy and Exosome Release. Biological and Pharmaceutical Bulletin, 42, 1394-1401. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Cadwell, K. (2016) Crosstalk between Autophagy and Inflammatory Signalling Pathways: Balancing Defence and Homeostasis. Nature Reviews Immunology, 16, 661-675. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhou, M., Xu, W., Wang, J., Yan, J., Shi, Y., Zhang, C., Ge, W., Wu, J., Du, P. and Chen, Y. (2018) Boosting mTOR-Dependent Autophagy via Upstream TLR4-MyD88-MAPK Signalling and Downstream NF-κB Pathway Quenches Intestinal Inflammation and Oxidative Stress Injury. eBioMedicine, 35, 345-360. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Monkkonen, T. and Debnath, J. (2018) Inflammatory Signaling Cascades and Autophagy in Cancer. Autophagy, 14, 190-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Peng, X., Wang, Y., Li, H., Fan, J., Shen, J., Yu, X., Zhou, Y. and Mao, H. (2019) ATG5-Mediated Autophagy Suppresses NF-κB Signaling to Limit Epithelial Inflammatory Response to Kidney Injury. Cell Death & Disease, 10, Article No. 253. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Racanelli, A.C., Kikkers, S.A., Choi, A.M.K. and Cloonan, S.M. (2018) Autophagy and Inflammation in Chronic Respiratory Disease. Autophagy, 14, 221-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Mizumura, K., Cloonan, S.M., Nakahira, K., Bhashyam, A.R., Cervo, M., Kitada, T., Glass, K., Owen, C.A., Mahmood, A., Washko, G.R., Hashimoto, S., Ryter, S.W. and Choi, A.M. (2014) Mitophagy-Dependent Necroptosis Contributes to the Pathogenesis of COPD. Journal of Clinical Investigation, 124, 3987-4003. [Google Scholar] [CrossRef]
|
|
[26]
|
Zhang, Y., Huang, W., Zheng, Z., Wang, W., Yuan, Y., Hong, Q., Lin, J., Li, X. and Meng, Y. (2021) Cigarette Smoke-Inactivated SIRT1 Promotes Autophagy-Dependent Senescence of Alveolar Epithelial Type 2 Cells to Induce Pulmonary Fibrosis. Free Radical Biology and Medicine, 166, 116-127. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ahmad, T., Sundar, I.K., Lerner, C.A., Gerloff, J., Tormos, A.M., Yao, H. and Rahman, I. (2015) Impaired Mitophagy Leads to Cigarette Smoke Stress-Induced Cellular Senescence: Implications for Chronic Obstructive Pulmonary Disease. The FASEB Journal, 29, 2912-2929. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Fujii, S., Hara, H., Araya, J., Takasaka, N., Kojima, J., Ito, S., Minagawa, S., Yumino, Y., Ishikawa, T., Numata, T., Kawaishi, M., Hirano, J., Odaka, M., Morikawa, T., Nishimura, S., Nakayama, K. and Kuwano, K. (2012) Insufficient Autophagy Promotes Bronchial Epithelial Cell Senescence in Chronic Obstructive Pulmonary Disease. Oncoimmunology, 1, 630-641. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Ornatowski, W., Lu, Q., Yegambaram, M., Garcia, A.E., Zemskov, E.A., Maltepe, E., Fineman, J.R., Wang, T. and Black, S.M. (2020) Complex Interplay between Autophagy and Oxidative Stress in the Development of Pulmonary Disease. Redox Biology, 36, Article ID: 101679. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Cordani, M., Sánchez-Álvarez, M., Strippoli, R., Bazhin, A.V. and Donadelli, M. (2019) Sestrins at the Interface of ROS Control and Autophagy Regulation in Health and Disease. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 1283075. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yao, H. and Rahman, I. (2011) Current Concepts on Oxidative/Carbonyl Stress, Inflammation and Epigenetics in Pathogenesis of Chronic Obstructive Pulmonary Disease. Toxicology and Applied Pharmacology, 254, 72-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Han, D., Wu, X., Liu, L., Shu, W. and Huang, Z. (2018) Sodium Tanshinone IIA Sulfonate Protects ARPE-19 Cells against Oxidative Stress by Inhibiting Autophagy and Apoptosis. Scientific Reports, 8, Article No. 15137. [Google Scholar] [CrossRef] [PubMed]
|