|
[1]
|
E. E. Kalu, T. T. Nwoga, V. Srinivasan, et al. Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electrochemically deposited nickel hydroxide. Journal of Power Sources, 2001, 92(1-2): 163-167.
|
|
[2]
|
A. Burke. Ultracapacitors: Why, how, and where is the technology. Journal of Power Sources, 2000, 91(1): 37-50.
|
|
[3]
|
B. E. Conway. Electrochemical supercapacitors: Scientific fundamentals and technological applications. Berlin: Springer, 1999: 1-698.
|
|
[4]
|
V. Aravindan, M. V. Reddy, S. Madhavi, et al. Hybrid supercapacitor with nano-TiP2O7 as intercalationelectrode. Journal of Power Sources, 2011, 196(20): 8850-8854.
|
|
[5]
|
T. Liu, H. Y. Zhang, F. Wang, et al. Three-dimensional supercapacitors composed of Ba0.65Sr0.35TiO3 (BST)/NiSi2/silicon microchannel plates. Materials Science and Engineering B, 2011, 176(5): 387-392.
|
|
[6]
|
E. Frackowiak, S. Delpeux, K. Jurewicz, et al. Enhanced capaci- tance of carbon nanotubes through chemical activation. Chemical Physics Letter, 2002, 361(1-2): 35-41.
|
|
[7]
|
A. R. Boccaccini, J. Cho, J. A. Roether, et al. Electrophoretic deposition of carbon nanotubes. Carbon, 2006, 44(15): 3149- 3160.
|
|
[8]
|
C. S. Du, N. Pan. Supercapacitors using carbon nanotubes films by electrophoretic deposition. Journal of Power Sources, 2006, 160(2): 1487-1494.
|
|
[9]
|
F. J. Miao, B. R. Tao, P. L. Ci, et al. 3D Ordered NiO/Silicon MCP array electrode materials for electrochemical supercapacitors. Material Research Bulletin, 2009, 44(9): 1920-1925.
|
|
[10]
|
D. Yuan, P. L. Ci, F. Tian, et al. Large-size P-type silicon microchannel plates prepared by photoelectrochemical etching. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2009, 8(3): Article ID 033012.
|