|
[1]
|
Dudman, J. and Qi, X. (2020) Stress Granule Dysregulation in Amyotrophic Lateral Sclerosis. Frontiers in Cellular Neuroscience, 14, Article ID: 598517. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Jaiswal, M.K. (2019) Riluzole and Edaravone: A Tale of Two Amyotrophic Lateral Sclerosis Drugs. Medicinal Research Reviews, 39, 733-748. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Dervishi, I., Gozutok, O., Murnan, K., Gautam, M., Heller, D., Bigio, E. and Ozdinler, P.H. (2018) Protein-Protein Interactions Reveal Key Canonical Pathways, Upstream Regulators, Interactome Domains, and Novel Targets in ALS. Scientific Reports, 8, Article ID: 14732. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Masrori, P. and van Damme, P. (2020) Amyotrophic Lateral Sclerosis: A Clinical Review. European Journal of Neurology, 27, 1918-2199. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Shi, Y., Lin, S., Staats, K.A., Li, Y., Chang, W.H., Hung, S.T., et al. (2018) Haploinsufficiency Leads to Neurodegeneration in C9ORF72 ALS/FTD Human Induced Motor Neurons. Nature Medicine, 24, 313-325. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Song, W., Song, Y., Kincaid, B., Bossy, B. and Bossy-Wetzel, E. (2013) Mutant SOD1G93A Triggers Mitochondrial Fragmentation in Spinal Cord Motor Neurons: Neuroprotection by SIRT3 and PGC-1α. Neurobiology of Disease, 51, 72-81. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Bravo-Hernandez, M., Tadokoro, T., Navarro, M.R., Platoshyn, O., Kobayashi, Y., Marsala, S., et al. (2020) Spinal Subpial Delivery of AAV9 Enables Widespread Gene Silencing and Blocks Motoneuron Degeneration in ALS. Nature Medicine, 26, 118-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Brown, R.H.J. and Al Chalabi, A. (2017) Amyotrophic Lateral Sclerosis. The New England Journal of Medicine, 377, Article No. 1602. [Google Scholar] [CrossRef]
|
|
[9]
|
Prasad, A., Bharathi, V., Sivalingam, V., Girdhar, A. and Patel, B.K. (2019) Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience, 12, Article No. 25. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Deng, H., Gao, K. and Jankovic, J. (2014) The Role of FUS Gene Variants in Neurodegenerative Diseases. Nature Reviews Neurology, 10, 337-348. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Sharma, A., Lyashchenko, A.K., Lu, L., Nasrabady, S.E., Elmaleh, M., Mendelsohn, M., et al. (2016) ALS-Associated Mutant FUS Induces Selective Motor Neuron Degeneration through Toxic Gain of Function. Nature Communications, 7, Article No. 10465. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Tyzack, G.E., Luisier, R., Taha, D.M., Neeves, J., Modic, M., Mitchell, J.S., et al. (2019) Widespread FUS Mislocalization Is a Molecular Hallmark of Amyotrophic Lateral Sclerosis. Brain, 142, 2572-2580. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Harley, J., Hagemann, C., Serio, A. and Patani, R. (2020) FUS Is Lost from Nuclei and Gained in Neurites of Motor Neurons in a Human Stem Cell Model of VCP-Related ALS. Brain, 143, e103. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Crozat, A., Aman, P., Mandahl, N. and Ron, D. (1993) Fusion of CHOP to a Novel RNA-Binding Protein in Human Myxoid Liposarcoma. Nature, 363, 640-644. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kato, M., Han, T.W., Xie, S., Shi, K., Du, X., Wu, L.C., et al. (2012) Cell-Free Formation of RNA Granules: Low Complexity Sequence Domains form Dynamic Fibers within Hydrogels. Cell, 149, 753-767. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Loughlin, F.E., Lukavsky, P.J., Kazeeva, T., Reber, S., Hock, E.M., Colombo, M., et al. (2019) The Solution Structure of FUS Bound to RNA Reveals a Bipartite Mode of RNA Recognition with Both Sequence and Shape Specificity. Molecular cell, 73, 490-504.e6. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Dormann, D., Rodde, R., Edbaue, R.D., Bentmann, E., Fischer, I., Hruscha, A., et al. (2010) ALS-Associated Fused in Sarcoma (FUS) Mutations Disrupt Trans portin-Mediated Nuclear Import. EMBO Journal, 29, 2841-2757. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Kapeli, K., Pratt, G.A., Vu, A.Q., Hutt, K.R., Martinez, F.J., Sundararaman, B., et al. (2016) Distinct and Shared Functions of ALS-Associated Proteins TDP-43, FUS and TAF15 Revealed by Multisystem Analyses. Nature Communications, 7, Article No. 12143. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Sama, R.R., Ward, C.L. and Bosco, D.A. (2014) Functions of FUS/TLS from DNA Repair to Stress Response: Implications for ALS. ASN Neuro, 6, 1-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kamelgarn, M., Chen, J., Kuang, L., Jin, H., Kasarskis, E.J. and Zhu, H. (2018) ALS Mutations of FUS Suppress Protein Translation and Disrupt the Regulation of Nonsense-Mediated Decay. Proceedings of the National Academy of Sciences of the United States of America, 115, E11904-E13. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Vandoorne, T., Veys, K., Guo, W., Sicart, A., Vints, K., Swijsen, A., et al. (2019) Differentiation but Not ALS Mutations in FUS Rewires Motor Neuron Metabolism. Nature Communications, 10, Article No. 4147. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Deng, J., Wang, P., Chen, X., Cheng, H., Liu, J., Fushimi, K., et al. (2018) FUS Interacts with ATP Synthase Beta Subunit and Induces Mitochondrial Unfolded Protein Response in Cellular and Animal Models. Proceedings of the National Academy of Sciences of the United States of America, 115, E9678-E9686. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Sabatelli, M., Moncada, A., Conte, A., Lattante, S., Marangi, G., Luigetti, M., et al. (2013) Mutations in the 3’ Untranslated Region of FUS Causing FUS Overexpression Are Associated with Amyotrophic Lateral Sclerosis. Human Molecular Genetics, 22, 4748-4755. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Vance, C., Scotter, E.L., Nishimura, A.L., Troakes, C., Mitchell, J.C., Kathe, C., et al. (2013) ALS Mutant FUS Disrupts Nuclear Localization and Sequesters Wild-Type FUS within Cytoplasmic Stress Granules. Human Molecular Genetics, 22, 2676-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
An, H., Skelt, L., Notaro, A., Highley, J.R., Fox, A.H., La, B.V., et al. (2019) ALS-Linked FUS Mutations Confer Loss and Gain of Function in the Nucleus by Promoting Excessive Formation of Dysfunctional Paraspeckles. Acta Neuropatho- logica Communications, 7, Article No. 7. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Don, E.K., Maschirow, A., Radford, R.A.W., et al. (2021) In Vivo Validation of Bimolecular Fluorescence Complementation (BiFC) to Investigate Aggregate Formation in Amyotrophic Lateral Sclerosis (ALS). Molecular Neurobiology, 58, 2061-2074. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Stronati, E., Biagioni, S., Fiore, M., Giorgi, M., Poiana, G., Toselli, C., et al. (2021) Wild-Type and Mutant FUS Expression Reduce Proliferation and Neuronal Differentiation Properties of Neural Stem Progenitor Cells. International Journal of Molecular Sciences, 22, Article No.7566. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ryan, V.H. and Fawzi, N.L. (2019) Physiological, Pathological, and Targetable Membraneless Organelles in Neurons. Trends in Neurosciences, 42, 693-708. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Advani, V.M. and Ivanov, P. (2020) Stress Granule Subtypes: An Emerging Link to Neurodegeneration. Cellular and Molecular Life Sciences, 77, 4827-4845. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Protter, D.S.W. and Parker, R. (2016) Principles and Properties of Stress Granules. Trends in Cell Biology, 26, 668-679. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Jain, S., Wheeler, J.R., Walters, R.W., Agrawal, A., Barsic, A. and Parker, R. (2016) ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure. Cell, 164, 487-498. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Panas, M.D., Ivanov, P. and Anderson, P. (2016) Mechanistic Insights into Mammalian Stress Granule Dynamics. The Journal of Cell Biology, 215, 313-323. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Tsai, W.C., Gayatri, S., Reineke, L.C., Sbardella, G., Bedford, M.T. and Lloyd, R.E. (2016) Arginine Demethylation of G3BP1 Promotes Stress Granule Assembly. The Journal of Biological Chemistry, 291, 22671-22685. [Google Scholar] [CrossRef]
|
|
[34]
|
Omer, A., Patel, D., Moran, J.L., Lian, X.J., Di, M.S. and Gallouzi, I.E. (2020) Autophagy and Heat-Shock Response Impair Stress Granule Assembly during Cellular Senescence. Mechanisms of Ageing and Development, 192, Article ID: 111382. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Janssens, J., Wils, H., Kleinberger, G., Joris, G., Cuijt, I., Ceuterick-de, G.C., et al. (2013) Overexpression of ALS-Associated p.M337V Human TDP-43 in Mice Worsens Disease Features Compared to Wild-Type Human TDP-43 Mice. Molecular Neurobiology, 48, 22-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Hensel, N. and Claus, P. (2018) The Actin Cytoskeleton in SMA and ALS: How Does It Contribute to Motoneuron Degeneration? Neuroscientist, 24, 54-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Lopez-Erauskin, J., Tadokoro, T., Baughn, M.W., Myers, B., McAlonis-Downes, M., Chillon-Marinas, C., et al. (2018) ALS/FTD-Linked Mutation in FUS Suppresses Intra-Axonal Protein Synthesis and Drives Disease without Nuclear Loss- of-Function of FUS. Neuron, 100, 816-830.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Groen, E.J., Fumoto, K., Blokhuis, A.M., Engelen-Lee, J., Zhou, Y., Heuvel, D.M., et al. (2013) ALS-Associated Mutations in FUS Disrupt the Axonal Distribution and Function of SMN. Human Molecular Genetics, 22, 3690-3704. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Lin, Y.C., Kumar, M.S., Ramesh, N., Anderson, E.N., Nguyen, A.T., Kim, B., et al. (2021) Interactions between ALS-linked FUS and Nucleoporins Are Associated with Defects in the Nucleocytoplasmic Transport Pathway. Nature Neuroscience, 24, 1077-1088. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Jun, M.H., Ryu, H.H., Jun, Y.W., Liu, T., Li, Y., Lim, C.S., et al. (2017) Sequestration of PRMT1 and Nd1-L mRNA into ALS-linked FUS Mutant R521C-Positive Aggregates Contributes to Neurite Degeneration upon Oxidative Stress. Scientific Reports, 7, Article No. 40474. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Tsai, Y.L., Coady, T.H., Lu, L., Zheng, D., Alland, I., Tian, B., et al. (2020) ALS/FTD-Associated Protein FUS Induces Mitochondrial Dysfunction by Preferentially Sequestering Respiratory Chain Complex mRNAs. Genes & Development, 34, 785-805. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Jutzi, D., Campagne, S., Schmidt, R., Reber, S., Mechtersheimer, J., Gypas, F., et al. (2020) Aberrant Interaction of FUS with the U1 snRNA Provides a Molecular Mechanism of FUS Induced Amyotrophic Lateral Sclerosis. Nature Communications, 11, Article No. 6341. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Steyaert, J., Scheveneels, W., Vanneste, J., Van, D.P., Robberecht, W., Callaerts, P., et al. (2018) FUS-Induced Neurotoxicity in Drosophila Is Prevented by Downregulating Nucleocytoplasmic Transport Proteins. Human Molecular Genetics, 27, 4103-4116. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Reineke, L.C. and Neilson, J.R. (2019) Differences between Acute and Chronic Stress Granules, and How These Differences May Impact Function in Human Disease. Biochemical Pharmacology, 162, 123-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wolozin, B. and Ivanov, P. (2019) Stress Granules and Neurodegeneration. Nature Reviews Neuroscience, 20, 649-666. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Marrone, L., Drexler, H.C.A., Wang, J., Tripathi, P., Distler, T., Heisterkamp, P., et al. (2019) FUS Pathology in ALS is Linked to Alterations in Multiple ALS-Associated Proteins and Rescued by Drugs Stimulating Autophagy. Acta Neuro- pathologica, 138, 67-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Wang, H., Guo, W., Mitra, J., Hegde, P.M., Vandoorne, T., Eckelmann, B.J., et al. (2018) Mutant FUS Causes DNA Ligation Defects to Inhibit Oxidative Damage Repair in Amyotrophic Lateral Sclerosis. Nature Communications, 9, Article No. 3683. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Kia, A., Mcavoy, K., Krishnamurthy, K., Trotti, D. and Pasinelli, P. (2018) Astrocytes Expressing ALS-Linked Mutant FUS Induce Motor Neuron Death through Release of Tumor Necrosis Factor-Alpha. Glia, 66, 1016-1033. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Lenzi, J., De Santis, R., De Turris, V., Morlando, M., Laneve, P., Calvo, A., et al. (2015) ALS Mutant FUS Proteins Are Recruited into Stress Granules in Induced Pluripotent Stem Cell-Derived Motoneurons. Disease Models & Mechanisms, 8, 755-766. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Zhang, X., Wang, F., Hu, Y., Chen, R., Meng, D., Guo, L., et al. (2020) In Vivo Stress Granule Misprocessing Evidenced in a FUS Knock-In ALS Mouse Model. Brain, 143, 1350-1367. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
De Santis, R., Alfano, V., De Turris, V., Colantoni, A., Santini, L., Garone, M.G., et al. (2019) Mutant FUS and ELAVL4 (HuD) Aberrant Crosstalk in Amyotrophic Lateral Sclerosis. Cell Reports, 27, 3818-3831.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Ryu, H.H., Jun, M.H., Min, K.J., Jang, D.J., Lee, Y.S., Kim, H.K., et al. (2014) Autophagy Regulates Amyotrophic Lateral Sclerosis-Linked Fused in Sarcoma-Positive Stress Granules in Neurons. Neurobiology of Aging, 35, 2822-2831. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Zhang, T., Jiang, X., Xu, M., Wang, H., Sang, X., Qin, M., et al. (2018) Sleep and Circadian Abnormalities Precede Cognitive Deficits in R521C FUS Knockin Rats. Neurobiology of Aging, 72, 159-170. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Guo, W., Naujock, M., Fumagalli, L., Vandoorne, T., Baatsen, P., Boon, R., et al. (2017) HDAC6 Inhibition Reverses Axonal Transport Defects in Motor Neurons Derived from FUS-ALS Patients. Nature Communications, 8, Article No. 861. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Guo, L., Kim, H.J., Wang, H., Monaghan, J., Freyermuth, F., Sung, J.C., et al. (2018) Nuclear-Import Receptors Reverse Aberrant Phase Transitions of RNA-Binding Proteins with Prion-Like Domains. Cell, 173, 677-692.e20. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Hofweber, M., Hutten, S., Bourgeois, B., Spreitzer, E., Niedner-Boblenz, A., Schifferer, M., et al. (2018) Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. Cell, 173, 706-719.e13. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Naumann, M., Pal, A., Goswami, A., Lojewski, X., Japtok, J., Vehlow, A., et al. (2018) Impaired DNA Damage Response Signaling by FUS-NLS Mutations Leads to Neurodegeneration and FUS Aggregate Formation. Nature Communications, 9, Article No. 335. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Lo Bello, M., Di Fini, F., Notaro, A., Spataro, R., Conforti, F.L. and La, B.V. (2017) ALS-Related Mutant FUS Protein Is Mislocalized to Cytoplasm and Is Recruited into Stress Granules of Fibroblasts from Asymptomatic FUS P525L Mutation Carriers. Neurodegenerative Diseases, 17, 292-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Birsa, N., Ule, A.M, Garone, M.G., Tsang, B., Mattedi, F., Chong, P.A., et al. (2021) FUS-ALS Mutants Alter FMRP Phase Separation Equilibrium and Impair Protein Translation. Science Advances, 7, Article No. eabf8660. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Salam, S., Tacconelli, S., Smith, B.N., Mitchell, J.C., Glennon, E., Nikolaou, N., et al. (2021) Identification of a Novel Interaction of FUS and Syntaphilin May Explain Synaptic and Mitochondrial Abnormalities Caused by ALS mutations. Scientific Reports, 11, Article No. 13613. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Ling, S.C., Dastidar, S.G., Tokunaga, S., Ho, W.Y., Lim, K., Ilieva, H., et al. (2019) Overriding FUS Autoregulation in Mice Triggers Gain-of-Toxic Dysfunctions in RNA Metabolism and Autophagy-Lysosome Axis. eLife, 8, e40811. [Google Scholar] [CrossRef]
|
|
[62]
|
Ho, W.Y., Agrawal, I., Tyan, S.H., Sanford, E., Chang, W.T., Lim, K., et al. (2021) Dysfunction in Nonsense-Mediated Decay, Protein Homeostasis, Mitochondrial Function, and Brain Connectivity in ALS-FUS Mice with Cognitive Deficits. Acta Neuropathologica Communications, 9, Article No. 9. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Baron, D.M., Matheny, T., Lin, Y.C., Sanford, E., Chang, W.T., Lim, K., et al. (2019) Quantitative Proteomics Identifies Proteins that Resist Translational Repression and Become Dysregulated in ALS-FUS. Human Molecular Genetics, 28, 2143-2160. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Nakaya, T. and Maragkakis, M. (2018) Amyotrophic Lateral Sclerosis associated FUS Mutation Shortens Mitochondria and Induces Neurotoxicity. Scientific Reports, 8, Article No. 15575. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Kawahara, D., Suzuki, T. and Nakaya, T. (2021) Cytoplasmic Granule Formation by FUS-R495X Is Attributable to Arginine Methylation in All Gly-Rich, RGG1 and RGG2 Domains. Genes to Cells, 26, 190-197. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Shiihashi, G., Ito, D., Yagi, T., Nihei, Y., Ebine, T. and Suzuki, N. (2016) Mislocated FUS Is Sufficient for Gain-of-Toxic- Function Amyotrophic Lateral Sclerosis Phenotypes in Mice. Brain, 139, 2380-2394. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Picchiarelli, G., Demestre, M., Zuko, A., Been, M., Higelin, J., Dieterle, S., et al. (2019) FUS-Mediated Regulation of Acetylcholine Receptor Transcription at Neuromuscular Junctions Is Compromised in Amyotrophic Lateral Sclerosis. Nature Neuroscience, 22, 1793-1805. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Scekic-Zahirovic, J., Sanjuan-Ruiz, I., Kan, V., Megat, S., De Rossi, P., Dieterle, S., et al. (2021) Cytoplasmic FUS Triggers Early Behavioral Alterations Linked to Cortical Neuronal Hyperactivity and Inhibitory Synaptic Defects. Nature Communications, 12, Article No. 3028. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Sahadevan, S., Hembach, K.M., Tantardini, E., Perez-Berlanga, M., Hruska-Plochan, M., Megat, S., et al. (2021) Synaptic FUS Accumulation Triggers Early Misregulation of Synaptic RNAs in a Mouse Model of ALS. Nature Communications, 12, Article No. 3027. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Markert, S.M., Skoruppa, M., Yu, B., Mulcahy, B., Zhen, M., Gao, S., et al. (2020) Overexpression of an ALS-Associated FUS Mutation in C. elegans Disrupts NMJ Morphology and Leads to Defective Neuromuscular Transmission. Biology Open, 9, Article No. bio055129. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Rhine, K., Makurath, M.A., Liu, J., Skanchy, S., Lopez, C., Catalan, K.F., et al. (2020) ALS/FTLD-Linked Mutations in FUS Glycine Residues Cause Accelerated Gelation and Reduced Interactions with Wild-Type FUS. Molecular Cell, 80, 666-681.e8. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Reber, S., Jutzi, D., Lindsay, H., Devoy, A., Mechtersheimer, J., Levone, B.R., et al. (2021) The Phase Separation-Depen- dent FUS Interactome Reveals Nuclear and Cytoplasmic Function of Liquid-Liquid Phase Separation. Nucleic Acids Research, 49, 7713-7731. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Plaitakis, A. and Caroscio, J.T. (1987) Abnormal Glutamate Metabolism in Amyotrophic Lateral Sclerosis. Annals of Neurology, 22, 575-579. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Amyotrophic Lateral Sclerosis/Riluzole Study Group II, Lacomblez, L., Bensimon, G., Leigh, P.N., Guillet, P. and Meininger, V. (1996) Dose-Rang ing Study of Riluzole in Amyotrophic Lateral Sclerosis. Lancet, 347, 1425-1431. [Google Scholar] [CrossRef]
|
|
[75]
|
Watanabe, T., Yuki, S., Egawa, M. and Nishi, H. (1994) Protective Effects of MCI-186 on Cerebral Ischemia: Possible Involvement of Free Radical Scavenging and Antioxidant Actions. Journal of Pharmacology and Experimental Therapeutics, 268, 1597-1604.
|
|
[76]
|
Arenas, A., Chen, J., Kuang, L., Barnett, K.R., Kasarskis, E.J., Gal, J., et al. (2020) Lysine Acetylation Regulates the RNA Binding, Subcellular Localization and Inclusion Formation of FUS. Human Molecular Genetics, 29, 2684-2697. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Fang, M.Y., Markmiller, S., Vu, A.Q., Javaherian, A., Dowdle, W.E., Jolivet. P., et al. (2019) Small-Molecule Modulation of TDP-43 Recruitment to Stress Granules Prevents Persistent TDP-43 Accumulation in ALS/FTD. Neuron, 103, 802-819.e11. [Google Scholar] [CrossRef] [PubMed]
|