|
[1]
|
Kuo, C.-F., Grainge, M.J., Mallen, C., et al. (2015) Rising Burden of Gout in the UK but Continuing Suboptimal Management: A Nationwide Population Study. Annals of the Rheumatic Diseases, 74, 661-667. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Singh, G., Lingala, B. and Mithal, A. (2019) Gout and Hyperuricaemia in the USA: Prevalence and Trends. Rheumatology (Oxford), 58, 2177-2180. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Chen, Y.Z., Tang, Z.Z., Huang, Z.Y., et al. (2017) The Prevalence of Gout in Mainland China from 2000 to 2016: A Systematic Review and Meta-Analysis. Journal of Public Health, 25, 521-529. [Google Scholar] [CrossRef]
|
|
[4]
|
张珂珂, 张晓坤, 李长贵. 青藏高原地区痛风的临床特点[J]. 青岛大学医学院学报, 2013, 49(4): 249-296.
|
|
[5]
|
阿祥仁, 周健武. 高原地区体检人群血尿酸水平和高尿酸血症调查研究[J]. 中华检验医学杂志, 2018, 41(6): 462-465.
|
|
[6]
|
Krishnan, E. (2010) Inflammation, Oxidative Stress and Lipids: The Risk Triad for Atherosclerosis in Gout. Rheumatology, 49, 1229-1238. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ichikawa, N., Taniguchi, A., Urano, W., et al. (2011) Comorbidities in Patients with Gout. Nucleosides Nucleotides Nucleic Acids, 30, 1045-1050. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Feldman, N., Rotter-Maskowitz, A. and Okun, E. (2015) DAMPs as Mediators of Sterile Inflammation in Aging-Related Pathologies. Ageing Research Reviews, 24, 29-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Eisenbacher, J.L., Schrezenmeier, H., Jahrsdörfer, B., et al. (2014) S100A4 and Uric Acid Promote Mesenchymal Stromal Cell Induction of IL-10+/IDO+ Lymphocytes. The Journal of Immunology, 192, 6102-6110. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Borregaard, N. (2010) Neutrophils, from Marrow to Microbes. Immunity, 33, 657-670. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Mantovani, A., Cassatella, M.A., Costantini, C. and Jaillon, S. (2011) Neutrophils in the Activation and Regulation of Innate and Adaptive Immunity. Nature Reviews Immunology, 11, 519-531. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Takei, H., Araki, A., Watanabe, H., et al. (1996) Rapid Killing of Human Neutrophils by the Potent Cxtivator Phorbol 12-Myristate 13-Acetate (PMA) Accompanied by Changes Different from Typical Apoptosis. Journal of Leukocyte Biology, 59, 229-240. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Brinkmann, V., Reichard, U., Goosmann, C., et al. (2004) Neutrophil Extracellular Traps Kill Bacteria. Science, 303, 1532-1535. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Mitroulis, I., Kambas, K., Chrysanthopoulou, A., et al. (2011) Neutrophil Extracelluar Trap Formation Is Associated with IL-1β and Autophagy-Related Signaling in Gout. PLos ONE, 6, e29318. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
McDermott, M.F., Kingsbury, S.R. and Conaghan, P.G. (2011) Terole of the NLRP3 Inflammasome in Gout. Journal of Inflammation Research, 4, 39-49. [Google Scholar] [CrossRef]
|
|
[16]
|
Liu-Bryan, R. (2010) Intracellular Innate Immunity in Gouty Arthritis: Role of NALP3 Inflammasome. Immunology and Cell Biology, 88, 20-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wei, H., Hu, C., Xie, J., et al. (2014) Doliroside A Attenuates Monosodium Urate Crystals-Induced Inflammation by Targeting NLRP3 Inflammasome. European Journal of Pharmacology, 740, 321-328. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Jorch, S.K. and Kubes, P. (2017) An Emerging Role for Neutrophil Extracellular Traps in Noninfectious Disease. Nature Medicine, 23, 279-287. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Pruchniak, M.P., Kotula, I. and Manda-Handzlik, A. (2015) Neutrophil Extracellular Traps (NETs) Impact upon Autoimmune Disorders. Central European Journal of Immunology, 40, 217-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
戚明珠, 苏晓慧, 林娜, 等. 中性粒细胞胞外诱捕网对缺血性脑卒中的影响及中药干预研究进展[J]. 中国中药杂志, 2021, 46(1): 1-5.
|
|
[21]
|
王玉婷, 顾兵, 李华南, 等. 中性粒细胞胞外诱捕网检测方法综述[J]. 中国药理学通报, 2019, 35(12): 1646-1649.
|
|
[22]
|
Burgener, S.S. and Schroder, K. (2020) Neutrophil Extracellular Traps in Host Defense. Cold Spring Harbor Perspectives in Biology, 12, a037028. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Bruschi, M., Moroni, G., Sinico, R.A., et al. (2021) Neutrophil Extracellular Traps in the Autoimmunity Context. Frontiers in Medicine, 8, Article ID: 614829. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Gupta, S. and Kaplan, M.J. (2016) The Role of Neutrophils and NETosis in Autoimmune and Renal Diseases. Nature Reviews Nephrology, 12, 402-413. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Cahilog, Z., Zhao, H., Wu, L., et al. (2020) The Role of Neutrophil NETosis in Organ Injury: Novel Inflammatory Cell Death Mechanisms. Inflammation, 43, 2021-2032. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Song, W., Ye, J., Pan, N., Tan, C., et al. (2021) Neutrophil Extracellular Traps Tied to Rheumatoid Arthritis: Points to Ponder. Frontiers in Immunology, 11, Article ID: 578129. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sil, P., Wicklum, H., Surell, C., et al. (2017) Macrophage-Derived IL-1β Enhances Monosodium Urate Crystal-Triggered NET Formation. Inflammation Research, 66, 227-237. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Schorn, C., Strysio, M., Janko, C., et al. (2010) The Uptake by Bloodborne Phagocytes of Monosodium Urate Is Dependent on Heat Labile Serum Factor and Divalent Cations. Autoimmunity, 43, 236-238. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Schauer, C., Janko, C., Munoz, L.E., et al. (2014) Aggregated Neutrophil Extracellular Traps Limit Inflammation by Degrading Cytokines and Chemokines. Nature Medicine, 20, 511-517. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Garcia-Gonzalez, E., Gamberucci, A., Lucherini, O.M., et al. (2021) Neutrophil Extracellular Traps Release in Gout and Pseudogout Depends on the Number of Crystals Regardless of Leukocyte Count. Rheumatology (Oxford), 6, 4920-4928. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Watson, S.P. (2009) Platelet Activation by Extracellular Matrix Proteins in Haemostasis and Thrombosis. Current Pharmaceutical Design, 15, 1358-1372. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
De Candia, E. (2012) Mechanisms of Platelet Activation by Thrombin: A Short History. Thrombosis Research, 129, 250-256. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zarbock, A., Ley, K., McEver, R.P., et al. (2011) Leukocyte Ligands for Endothelial Selectins: Specialized Glycoconjugates That Mediate Rolling and Signaling under Flow. Blood, 118, 6743-6751. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Semple, J.W., Italiano, J.E. and Freedman, J. (2011) Platelets and the Immune Continuum. Nature Reviews Immunology, 11, 264-274. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Hamburger, S.A. and McEver, R.P. (1990) GMP-140 Mediates Adhesion of Stimulated Platelets to Neutrophils. Blood, 75, 550-554. [Google Scholar] [CrossRef]
|
|
[36]
|
Larsen, E., Palabrica, T., Sajer, S., et al. (1990) PADGEM-Dependent Adhesion of Platelets to Monocytes and Neutrophils Is Mediated by a Lineage-Specific Carbohydrate, LNF III (CD15). Cell, 63, 467-474. [Google Scholar] [CrossRef]
|
|
[37]
|
Moore, K.L., Varki, A. and McEver, R.P. (1991) GMP-140 Binds to a Glycoprotein Receptor on Human Neutrophils: Evidence for a Lectin-Like Interaction. Journal of Cell Biology, 112, 491-499. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Moore, K.L., Patel, K.D., Bruehl, R.E., et al. (1995) P-Selectin Glycoprotein Ligand-1 Mediates Rolling of Human Neutrophils on P-Selectin. Journal of Cell Biology, 128, 661-671. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Von Hundelshausen, P. and Weber, C. (2007) Platelets as Immune Cells: Bridging Inflammation and Cardiovascular Disease. Circulation Research, 100, 27-40. [Google Scholar] [CrossRef]
|
|
[40]
|
Evangelista, V., Manarini, S., Sideri, R., et al. (1999) Platelet/Polymorphonuclear Leukocyte Interaction: P-Selectin Triggers Protein-Tyrosine Phosphorylation-Dependent CD11b/CD18 Adhesion: Role of PSGL-1 as a Signaling Molecule. Blood, 93, 876-885. [Google Scholar] [CrossRef]
|
|
[41]
|
Yang, J., Furie, B.C. and Furie, B. (1999) The Biology of P-Selectin Glycoprotein Ligand-1: Its Role as a Selectin Counterreceptor in Leukocyte-Endothelial and Leukocyte-Platelet Interaction. Thrombosis and Haemostasis, 81, 1-7. [Google Scholar] [CrossRef]
|
|
[42]
|
van Gils, J.M., Zwaginga, J.J. and Hordijk, P.L. (2009) Molecular and Functional Interactions among Monocytes, Platelets, and Endothelial Cells and Their Relevance for Cardiovascular Diseases. Journal of Leukocyte Biology, 85, 195-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Andonegui, G., Kerfoot, S.M., McNagny, K., et al. (2005) Platelets Express Functional Toll-Like Receptor-4. Blood, 106, 2417-2423. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Semple, J.W. and Freedman, J. (2010) Platelets and Innate Immunity. Cellular and Molecular Life Sciences, 67, 499-511. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Albiger, B., Dahlberg, S., Henriques-Normark, B., et al. (2007) Role of the Innate Immune System in Host Defence against Bacterial Infections: Focus on the Toll-Like Receptors. Journal of Internal Medicine, 261, 511-528. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Andonegui, G., Bonder, C.S., Green, F., et al. (2003) Endothelium-Derived Toll-Like Receptor-4 Is the Key Molecule in LPS-Induced Neutrophil Sequestration into Lungs. Journal of Clinical Investigation, 111, 1011-1020. [Google Scholar] [CrossRef]
|
|
[47]
|
McDonald, B., Urrutia, R., Yipp, B.G., et al. (2012) Intravascular Neutrophil Extracellular Traps Capture Bacteria from the Bloodstream during Sepsis. Cell Host & Microbe, 12, 324-333. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Simon, D.I., Chen, Z., Xu, H., et al. (2000) Platelet Glycoprotein Ibalpha Is a Counter Receptor for the Leukocyte Integrin Mac-1 (CD11b/CD18). Journal of Experimental Medicine, 192, 193-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Rossaint, J., Herter, J.M., Van Aken, H., et al. (2014) Synchronized Integrin Engagement and Chemokine Activation Is Crucial in Neutrophil Extracellular Trap-Mediated Sterile Inflammation. Blood, 123, 2573-2584. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
de Boer, O.J., Li, X., Teeling, P., et al. (2013) Neutrophils, Neutrophil Extracellular Traps and Interleukin-17 Associate with the Organisation of Thrombi In Acute Myocardial Infarction. Thrombosis and Haemostasis, 109, 290-297. [Google Scholar] [CrossRef]
|
|
[51]
|
Stakos, D.A., Kambas, K., Konstantinidis, T., et al. (2015) Expression of Functional Tissue Factor by Neutrophil Extracellular Traps in Culprit Artery of Acute Myocardial Infarction. European Heart Journal, 36, 1405-1414. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Fuchs, T.A., Brill, A., Duerschmied, D., et al. (2010) Extracellular DNA Traps Promote Thrombosis. Proceedings of the National Academy of Sciences of the United States of America, 107, 15880-15885. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Maugeri, N., Campana, L., Gavina, M., et al. (2014) Activated Platelets Present High Mobility Group Box 1 to Neutrophils, Inducing Autophagy and Promoting the Extrusion of Neutrophil Extracellular Traps. Journal of Thrombosis and Haemostasis, 12, 2074-2088. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
McDonald, B., Davis, R.P., Kim, S.J., et al. (2017) Platelets and Neutrophil Extracellular Traps Collaborate to Promote Intravascular Coagulation during Sepsis in Mice. Blood, 129, 1357-1367. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Perdomo, J., Leung, H.H.L., Ahmadi, Z., et al. (2019) Neutrophil Activation and NETosis Are the Major Drivers of Thrombosis in Heparin-Induced Thrombocytopenia. Nature Communications, 10, Article No. 1322. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Wvon Bruhl, M.L., Stark, K., Steinhart, A., et al. (2012) Monocytes, Neutrophils, and Platelets € Cooperate to Initiate and Propagate Venous Thrombosis in Mice in Vivo. Journal of Experimental Medicine, 209, 819-835. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Staessens, S., Denorme, F., Francois, O., et al. (2020) Structural Analysis of Ischemic Stroke Thrombi: Histological Indications for Therapy Resistance. Haematologica, 105, 498-507. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Mangold, A., Alias, S., Scherz, T., et al. (2015) Coronary Neutrophil Extracellular Trap Burden and Deoxyribonuclease Activity in ST-Elevation Acute Coronary Syndrome Are Predictors of ST-Segment Resolution and Infarct Size. Circulation Research, 116, 1182-1192. [Google Scholar] [CrossRef]
|
|
[59]
|
Wang, Y., Luo, L., Braun, O.O., et al. (2018) Neutrophil Extracellular Trap-Microparticle Complexes Enhance Thrombin Generation via the Intrinsic Pathway of Coagulation in Mice. Scientific Reports, 8, Article No. 4020. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Zhou, P., Li, T., Jin, J.Q., et al. (2020) Interactions between Neutrophil Extracellular Traps and Activated Platelets Enhance Procoagulant Activity in Acute Stroke Patients with ICA Occlusion. EBOI Medicine, 53, Article ID: 102671. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Folco, E.J., Mawson, T.L., Vromman, A., et al. (2018) Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production through Interleukin-1alpha and Cathepsin G. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, 1901-1912. [Google Scholar] [CrossRef]
|
|
[62]
|
Ramirez, G.A., Manfredi, A.A. and Maugeri, N. (2019) Misunderstandings between Platelets and Neutrophils Build in Chronic Inflammation. Frontiers in Immunology, 10, Article No. 2491. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Gros, A., Ollivier, V. and Ho-Tin-Noe, B. (2015) Platelets in Inflammation: Regulation of Leukocyte Activities and Vascular Repair. Frontiers in Immunology, 5, Article No. 678. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Lindberg, U., Svensson, L., Hellmark, T., et al. (2018) Increased Platelet Activation Occurs in Cystic Fibrosis Patients and Correlates to Clinical Status. Thrombosis Research, 162, 32-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Zuchtriegel, G., Uhl, B., Puhr-Westerheide, D., et al. (2016) Platelets Guide Leukocytes to Their Sites of Extravasation. PLOS Biology, 14, e1002459. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Pitchford, S., Pan, D. and Welch, H.C.E. (2017) Platelets in Neutrophil Recruitment to Sites of Inflammation. Current Opinion in Hematology, 24, 23-31. [Google Scholar] [CrossRef]
|
|
[67]
|
Kim, K.H., Barazia, A. and Cho, J. (2014) Real-Time Imaging of Heterotypic Platelet-Neutrophil Interactions on the Activated Endothelium during Vascular Inflammation and Thrombus Formation in Live Mice. Journal of Visualized Experiments, 74, Article ID: 50329. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Zwaginga, J.J., Torres, H.I.G., Lammers, J.-W.J., et al. (1999) Minimal Platelet Deposition and Activation in Models of Injured Vessel Wall Ensure Optimal Neutrophil Adhesion under Flow Conditions. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 1549-1554. [Google Scholar] [CrossRef]
|
|
[69]
|
Totani, L., Piccoli, A., Dell’Elba, G., et al. (2014) Phosphodiesterase Type 4 Blockade Prevents Platelet-Mediated Neutrophil Recruitment at the Site of Vascular Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 1689-1696. [Google Scholar] [CrossRef]
|
|
[70]
|
Evangelista, V., Pamuklar, Z., Piccoli, A., et al. (2007) SRC Family Kinases Mediate Neutrophil Adhesion to Adherent Platelets. Blood, 109, 2461-2469. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Kuravi, S.J., Harrison, P., Rainger, G.E., et al. (2019) Ability of Platelet-Derived Extracellular Vesicles to Promote Neutrophil-Endothelial Cell Interactions. Inflammation, 42, 290-305. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Etulain, J., Martinod, K., Wong, S.L., et al. (2015) P-Selectin Promotes Neutrophil Extracellular Trap Formation in Mice. Blood, 126, 242-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Maugeri, N., Rovere-Querini, P., Baldini, M., et al. (2014) Oxidative Stress Elicits Platelet/Leukocyte Inflammatory Interactions via HMGB1: A Candidate for Microvessel Injury in Systemic Sclerosis. Antioxidants & Redox Signaling, 20, 1060-1074. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Dole, V.S., Bergmeier, W., Mitchell, H.A., et al. (2005) Activated Platelets Induce Weibel-Palade-Body Secretion and Leukocyte Rolling in Vivo: Role of P-Selectin. Blood, 106, 2334-2339. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Petri, B., Broermann, A., Li, H., et al. (2010) von Willebrand Factor Promotes Leukocyte Extravasation. Blood, 116, 4712-4719. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Abdulla, A., Awla, D., Hartman, H., et al. (2012) Platelets Regulate P-Selectin Expression and Leukocyte Rolling in Inflamed Venules of the Pancreas. European Journal of Pharmacology, 682, 153-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Frydman, G.H., Le, A., Ellett, F., et al. (2017) Technical Advance: Changes in Neutrophil Migration Patterns upon Contact with Platelets in a Microfluidic Assay. Journal of Leukocyte Biology, 101, 797-806. [Google Scholar] [CrossRef]
|
|
[78]
|
Gremmel, T., Koppensteiner, R., Kaider, A., et al. (2015) Impact of Variables of the P-Selectin—P-Selectin Glycoprotein Ligand-1 Axis on Leukocyte-Platelet Interactions in Cardiovascular Disease. Thrombosis and Haemostasis, 113, 806-812. [Google Scholar] [CrossRef]
|