|
[1]
|
Wang, L., Liu, T., Liang, P., et al. (2020) Characterization of Exosome-Like Vesicles Derived from Taenia pisiformis Cysticercus and Their Immunoregulatory Role on Macrophages. Parasites & Vectors, 13, 318. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zhao, Y., Fu, Y., Zou, M., et al. (2020) Analysis of Deep Sequencing Exosome-microRNA Expression Profile Derived from CP-II Reveals Potential Role of gga-miRNA-451 in Inflammation. Journal of Cellular and Molecular Medicine, 24, 6178-6190. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Rashed, M., Bayraktar, E., Helal, G., et al. (2017) Exosomes: From Garbage Bins to Promising Therapeutic Targets. International Journal of Molecular Sciences, 18, 538. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Liu, Z., Gan, L., Zhang, T., et al. (2018) Melatonin Alleviates Adipose Inflammation through Elevating α-Ketoglutarate and Diverting Adipose-Derived Exosomes to Macrophages in Mice. Journal of Pineal Research, 64, e12455. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Boriachek, K., Islam, M., Möller, A., et al. (2018) Biological Functions and Current Advances in Isolation and Detection Strategies for Exosome Nanovesicles. Small (Weinheim an der Bergstrasse, Germany), 14, 1-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Jones, L., Bell, C., Bibb, K., et al. (2018) Pathogens and Their Effect on Exosome Biogenesis and Composition. Biomedicines, 6, 79. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hu, G., Gong, A., Roth, A., et al. (2013) Release of Luminal Exosomes Contributes to TLR4-Mediated Epithelial Antimicrobial Defense. PLoS Pathogens, 9, e1003261. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Val, S., Krueger, A., Poley, M., et al. (2018) Nontypeable Haemophilus Influenzae Lysates Increase Heterogeneous Nuclear Ribonucleoprotein Secretion and Exosome Release in Human Middle-Ear Epithelial Cells. FASEB Journal, 32, 1855-1867. [Google Scholar] [CrossRef]
|
|
[9]
|
Nocera, A., Mueller, S., Stephan, J., et al. (2019) Exosome Swarms Eliminate Airway Pathogens and Provide Passive Epithelial Immunoprotection through Nitric Oxide. The Journal of Allergy and Clinical Immunology, 143, 1525-1535.e1. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Mizutani, K., Kawakami, K., Horie, K., et al. (2019) Urinary Exosome as a Potential Biomarker for Urinary Tract Infection. Cellular Microbiology, 21, e13020. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Yang, X., Shi, G., Guo, J., et al. (2018) Staphylococcus aureus Exosome-Encapsulated Antibiotic against Intracellular Infections of Methicillin-Resistant. International Journal of Nanomedicine, 13, 8095-8104. [Google Scholar] [CrossRef]
|
|
[12]
|
Tyagi, P., Pal, V., Agrawal, R., et al. (2020) Mycobacterium tuberculosis Reactivates HIV-1 via Exosome-Mediated Resetting of Cellular Redox Potential and Bioenergetics. mBio, 11, e03293-19. [Google Scholar] [CrossRef]
|
|
[13]
|
Li, N., Liu, S., Dong, K., et al. (2019) H. pylori Exosome-Transmitted miR-25 Induced by Promotes Vascular Endothelial Cell Injury by Targeting KLF2. Frontiers in Cellular and Infection Microbiology, 9, Article No. 366. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Xia, X., Zhang, L., Chi, J., et al. (2020) Helicobacter pylori Infection Impairs Endothelial Function through an Exosome-Mediated Mechanism. Journal of the American Heart Association, 9, e014120. [Google Scholar] [CrossRef]
|
|
[15]
|
Khoei, S., Sadeghi, H. and Saidijam, M. (2020) Helicobacter pylori: The Use of Exosome Carrier to Augmentation of Infection Treatment. Stem Cell Investigation, 7, 23. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Crenshaw, B., Gu, L., Sims, B., et al. (2018) Exosome Biogenesis and Biological Function in Response to Viral Infections. The Open Virology Journal, 12, 134-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Teow, S., Nordin, A., Ali, S., et al. (2016) Exosomes in Human Immunodeficiency Virus Type I Pathogenesis: Threat or Opportunity? Advances in Virology, 2016, Article ID: 9852494. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Li, J., Liu, K., Liu, Y., et al. (2013) Exosomes Mediate the Cell-to-Cell Transmission of IFN-α-Induced Antiviral Activity. Nature Immunology, 14, 793-803. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Chettimada, S., Lorenz, D., Misra, V., et al. (2018) Exosome Markers Associated with Immune Activation and Oxidative Stress in HIV Patients on Antiretroviral Therapy. Scientific Reports, 8, Article No. 7227. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Hernández-Walias, F., Vázquez, E., Pacheco, Y., et al. (2020) Risk, Diagnostic and Predictor Factors for Classical Hodgkin Lymphoma in HIV-1-Infected Individuals: Role of Plasma Exosome-Derived miR-20a and miR-21. Journal of Clinical Medicine, 9, 760. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ruiz-de-León, M., Jiménez-Sousa, M., Moreno, S., et al. (2019) Lower Expression of Plasma-Derived Exosome miR-21 Levels in HIV-1 Elite Controllers with Decreasing CD4 T Cell Count. Journal of Microbiology, Immunology, and Infection, 52, 667-671. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Costafreda, M., Abbasi, A., Lu, H., et al. (2020) Exosome Mimicry by a HAVCR1-NPC1 Pathway of Endosomal Fusion Mediates Hepatitis A Virus Infection. Nature Microbiology, 5, 1096-1106. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Deng, L., Gan, X., Ito, M., et al. (2019) Peroxiredoxin 1, a Novel HBx-Interacting Protein, Interacts with Exosome Component 5 and Negatively Regulates Hepatitis B Virus (HBV) Propagation through Degradation of HBV RNA. Journal of Virology, 93, e02203-18. [Google Scholar] [CrossRef]
|
|
[24]
|
Ma, C., Xu, W., Yang, Q., et al. (2020) Osteopetrosis-Associated Transmembrane Protein 1 Recruits RNA Exosome to Restrict Hepatitis B Virus Replication. Journal of Virology, 94, e01800-19. [Google Scholar] [CrossRef]
|
|
[25]
|
Zitzmann, C., Kaderali, L. and Perelson, A. (2020) Mathematical Modeling of Hepatitis C RNA Replication, Exosome Secretion and Virus Release. PLoS Computational Biology, 16, e1008421. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Chahar, H., Corsello, T., Kudlicki, A., et al. (2018) Respiratory Syncytial Virus Infection Changes Cargo Composition of Exosome Released from Airway Epithelial Cells. Scientific Reports, 8, Article No. 387. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Patil, M., Singh, S., Henderson, J., et al. (2020) Mechanisms of COVID-19-Induced Cardiovascular Disease: Is Sepsis or Exosome the Missing Link? Journal of Cellular Physiology, 236, 3366-3382. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Gupta, A., Kashte, S., Gupta, M., et al. (2020) Mesenchymal Stem Cells and Exosome Therapy for COVID-19: Current Status and Future Perspective. Human Cell, 33, 907-918. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Askenase, P. (2020) COVID-19 Therapy with Mesenchymal Stromal Cells (MSC) and Convalescent Plasma Must Consider Exosome Involvement: Do the Exosomes in Convalescent Plasma Antagonize the Weak Immune Antibodies? Journal of Extracellular Vesicles, 10, e12004. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Liu, Y., Tseng, C., Chen, Y., et al. (2019) Exosome-Delivered and Y RNA-Derived Small RNA Suppresses Influenza Virus Replication. Journal of Biomedical Science, 26, 58. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Castelli, G., Bruno, F., Saieva, L., et al. (2019) Exosome Secretion by Leishmania infantum Modulate the Chemotactic Behavior and Cytokinic Expression Creating an Environment Permissive for Early Infection. Experimental Parasitology, 198, 39-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Heisler, F., Pechmann, Y., Wieser, I., et al. (2018) Muskelin Coordinates PrP Lysosome versus Exosome Targeting and Impacts Prion Disease Progression. Neuron, 99, 1155-1169.e9. [Google Scholar] [CrossRef] [PubMed]
|