|
[1]
|
于德强. 动态颅内压监测对去骨瓣减压术后重度高血压脑出血患者预后的影响[J]. 中国实用神经疾病杂志, 2019, 22(4): 419-425. [Google Scholar] [CrossRef]
|
|
[2]
|
高进保, 李学真, 李文德, 等. 动态颅内压监测在高血压小脑出血手术治疗中的应用[J]. 中国实用神经疾病杂志, 2018, 21(12): 1325-1329.
|
|
[3]
|
Reithmeier, T., Isaak, R. and Sanchez-Porres, R. (2018) Neuromonitoring und Therapieentscheidungen auf der Intensivstation. AINS Ansthesiologie Intensivmedizin, 53, 682-695. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bratton, S.L., Chestnut, R.M., Ghajar, J., et al. (2007) VIII. Intracranial Pressure Thresholds. Journal of Neurotrauma, 24, S83-S86. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Nordstrom, C.H., Reinstrup, P., Xu, W., et al. (2003) Assessment of the Lower Limit for Cerebral Perfusion Pressure in Severe Head Injuries by Bedside Monitoring of Regional Energy Metabolism. Anesthesiology, 98, 809-814.
[Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
高亮. 美国第四版《重型颅脑损伤救治指南》解读[J]. 中华神经创伤外科电子杂志, 2017, 3(6): 321-324.
[Google Scholar] [CrossRef]
|
|
[7]
|
Cnossen, M.C., Huijben, J.A., Mathieu, V., et al. (2017) Variation in Monitoring and Treatment Policies for Intracranial Hypertension in Traumatic Brain Injury: A Survey in 66 Neurotrauma Centers Participating in the CENTER-TBI Study. Critical Care, 21, Article No. 233. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lang, E.W., Kasprowicz, M., Smielewski, P., et al. (2016) Outcome, Pressure Reactivity and Optimal Cerebral Perfusion Pressure Calculation in Traumatic Brain Injury: A Comparison of Two Variants. Acta Neurochirurgica Supplement, 122, 221-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Carney, N., Totten, A.M., O’Reilly, C., et al. (2017) Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery, 80, 6-15. [Google Scholar] [CrossRef]
|
|
[10]
|
Heldt, T., Zoerle, T., Teichmann, D., et al. (2019) Intracranial Pressure and Intracranial Elastance Monitoring in Neurocritical Care. Annual Review of Biomedical Engineering, 21, 523-549.
[Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Bruder, N., N’Zoghe, P., Graziani, N., et al. (1995) A Comparison of Extradural and Intraparenchymatous Intracranial Pressures in Head Injured Patients. Intensive Care Medicine, 21, 850-852. [Google Scholar] [CrossRef]
|
|
[12]
|
Usmah, K., Richard, M.C., Charles, A., et al. (2015) Advances in Intracranial Pressure Monitoring and Its Significance in Managing Traumatic Brain Injury. International Journal of Molecular Sciences, 16, 28979-28997.
[Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Sheehan, J.R., Liu, X., Donnelly, J., et al. (2018) Clinical Application of Non-Invasive Intracranial Pressure Measurements. BJA British Journal of Anaesthesia, 121, 500-501. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Robba, C., Bacigaluppi, S., Cardim, D., et al. (2016) Non-Invasive Assessment of Intracranial Pressure. Acta Neurologica Scandinavica, 134, 4-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Narayan, V., Mohammed, N., Savardekar, A.R., et al. (2018) Non-Invasive Intracranial Pressure Monitoring for Severe Traumatic Brain Injury in Children: A Concise Update on Current Methods. World Neurosurgery, 114, 293-300.
[Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
O’Brien, N.F., Maa, T. and Yeates, K.O. (2015) The Epidemiology of Vasospasm in Children with Moderate-to-Severe Traumatic Brain Injury. Critical Care Medicine, 43, 674-685. [Google Scholar] [CrossRef]
|
|
[17]
|
Zhou, J., Li, J., Ye, T., et al. (2019) Ultrasound Measurements versus Invasive Intracranial Pressure Measurement Method in Patients with Brain Injury: A Retrospective Study. BMC Medical Imaging, 19, Article No. 53.
[Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Raboel, P.H., Bartek, J. andresen, M., et al. (2012) Intracranial Pressure Monitoring: Invasive versus Non-Invasive Methods—A Review. Critical Care Research and Practice, 2012, Article ID: 950393.
[Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Rajajee, V., Fletcher, J.J., Rochlen, L.R., et al. (2012) Comparison of Accuracy of Optic Nerve Ultrasound for the Detection of Intracranial Hypertension in the Setting of Acutely Fluctuating vs Stable Intracranial Pressure: Post-Hoc Analysis of Data from a Prospective, Blinded Single Center Study. Critical Care, 16, R79.
[Google Scholar] [CrossRef]
|
|
[20]
|
Robba, C., Cardim, D., Tajsic, T., et al. (2018) Non-Invasive Intracranial Pressure Assessment in Brain Injured Patients Using Ultrasound-Based Methods. Acta Neurochirurgica Supplement, 126, 69-73.
[Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Giraudet, F., Longeras, F., Mulliez, A., et al. (2017) Noninvasive Detection of Alarming Intracranial Pressure Changes by Auditory Monitoring in Early Management of Brain Injury: A Prospective Invasive versus Noninvasive Study. Critical Care, 21, 35. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Matthews, J.M., et al. (2018) An Embedded Device for Real-Time Noninvasive Intracranial Pressure Estimation. Acta Neurochirurgica. Supplement, 126, 85-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
He, J.Q., et al. (2019) The Value of Managing Severe Traumatic Brain Injury during the Perioperative Period Using Intracranial Pressure Monitoring. The Journal of Craniofacial Surgery, 30, 2217-2223.
[Google Scholar] [CrossRef]
|
|
[24]
|
Chen, J.-H., et al. (2018) Multimodal Monitoring Combined with Hypothermia for the Management of Severe Traumatic Brain Injury: A Case Report. Experimental and Therapeutic Medicine, 15, 4253-4258.
[Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Harary, M., et al. (2018) Intracranial Pressure Monitoring—Review and Avenues for Development. Sensors (Basel, Switzerland), 18, 465. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Piccinini, A., et al. (2017) Intracranial Pressure Monitoring in Severe Traumatic Brain Injuries: A Closer Look at Level 1 Trauma Centers in the United States. Injury, 48, 1944-1950. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Picetti, E., et al. (2017) Intracranial Pressure Monitoring after Primary Decompressive Craniectomy in Traumatic Brain Injury: A Clinical Study. Acta Neurochirurgica, 159, 615-622. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Murkin, J.M. and Arango, M. (2009) Near-Infrared Spectroscopy as an Index of Brain and Tissue Oxygenation. British Journal of Anaesthesia, 103, i3-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Davies, D.J., et al. (2015) Near-Infrared Spectroscopy in the Monitoring of Adult Traumatic Brain Injury: A Review. Journal of Neurotrauma, 32, 933-941. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kampfl, A., Pfausler, B., Denchev, D., et al. (1997) Near Infrared Spectroscopy (NIRS) in Patients with Severe Brain Injury and Elevated Intracranial Pressure. A Pilot Study. Acta Neurochirurgica Supplement, 70, 112.
[Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Rescoe, E., et al. (2017) Cerebral Near-Infrared Spectroscopy Insensitively Detects Low Cerebral Venous Oxygen Saturations after Stage 1 Palliation. The Journal of Thoracic and Cardiovascular Surgery, 154, 1056-1062.
[Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Benni, P.B., et al. (2018) A Validation Method for Near-Infrared Spectroscopy Based Tissue Oximeters for Cerebral and Somatic Tissue Oxygen Saturation Measurements. Journal of Clinical Monitoring and Computing, 32, 269-284.
[Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Alosh, H., et al. (2016) The Correlation between Brain Near-Infrared Spectroscopy and Cerebral Blood Flow in Piglets with Intracranial Hypertension. Journal of Applied Physiology (Bethesda, Md.: 1985), 121, 255-260.
[Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Maas, A.I.R., Stocchetti, N. and Bullock, R. (2008) Moderate and Severe Traumatic Brain Injury in Adults. The Lancet Neurology, 7, 728-741. [Google Scholar] [CrossRef]
|
|
[35]
|
Liao, R., Li, J. and Liu, J. (2010) Volatile Induction/Maintenance of Anaesthesia with Sevoflurane Increases Jugular Venous Oxygen Saturation and Lumbar Cerebrospinal Fluid Pressure in Patients Undergoing Craniotomy. European Journal of Anaesthesiology, 27, 369-376. [Google Scholar] [CrossRef]
|
|
[36]
|
Oertel, M., et al. (2002) Is CPP Therapy Beneficial for All Patients with High ICP? Acta Neurochirurgica. Supplement, 81, 67-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Bragin, D.E., Kameneva, M.V., Bragina, O.A., et al. (2016) Rheological Effects of Drag-Reducing Polymers Improve Cerebral Blood Flow and Oxygenation after Traumatic Brain Injury in Rats. Journal of Cerebral Blood Flow & Metabolism, 37, 762. [Google Scholar] [CrossRef]
|
|
[38]
|
Robertson, C.S., et al. (1995) SjvO2 Monitoring in Head-Injured Patients. Journal of Neurotrauma, 12, 891-896.
[Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Gautschi, O.P., et al. (2009) Zerebrale Mikrodialyse—Möglichkeiten und Grenzen [Cerebral Microdialysis. Options and Limits]. Anasthesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie: AINS, 44, 268-274.
[Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Langemann, H., et al. (1995) Experimental and Clinical Monitoring of Glucose by Microdialysis. Clinical Neurology and Neurosurgery, 97, 149-155. [Google Scholar] [CrossRef]
|
|
[41]
|
Hazell, A.S. (2007) Excitotoxic Mechanisms in Stroke: An Update of Concepts and Treatment Strategies. Neurochemistry International, 50, 941-953. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Stiefel, M.F., et al. (2006) Conventional Neurocritical Care and Cerebral Oxygenation after Traumatic Brain Injury. Journal of Neurosurgery, 105, 568-575. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Chamoun, R., Suki, D., Gopinath, S.P., Goodman, J.C. and Robertson, C. (2010) Role of Extracellular Glutamate Measured by Cerebral Microdialysis in Severe Traumatic Brain Injury. Journal of Neurosurgery, 113, 564-570.
[Google Scholar] [CrossRef]
|
|
[44]
|
Helbok, R., et al. (2011) Global Cerebral Edema and Brain Metabolism after Subarachnoid Hemorrhage. Stroke, 42, 1534-1539. [Google Scholar] [CrossRef]
|
|
[45]
|
Cesak, T., et al. (2018) The Relationship between Intracranial Pressure and Lactate/Pyruvate Ratio in Patients with Subarachnoid Haemorrhage. Bratislavske Lekarske Listy, 119, 139-142. [Google Scholar] [CrossRef]
|
|
[46]
|
Wettervik, T.S., et al. (2021) Arterial Oxygenation in Traumatic Brain Injury-Relation to Cerebral Energy Metabolism, Autoregulation, and Clinical Outcome. Journal of Intensive Care Medicine, 36, 1075-1083.
[Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Donnelly, J., et al. (2015) Increased Blood Glucose Is Related to Disturbed Cerebrovascular Pressure Reactivity after Traumatic Brain Injury. Neurocritical Care, 22, 20-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Chamoun, R., et al. (2010) Role of Extracellular Glutamate Measured by Cerebral Microdialysis in Severe Traumatic Brain Injury. Journal of Neurosurgery, 113, 564-570. [Google Scholar] [CrossRef]
|
|
[49]
|
Mrozek, S., et al. (2012) Brain Temperature: Physiology and Pathophysiology after Brain Injury. Anesthesiology Research and Practice, 2012, Article ID: 989487. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Svedung-Wettervik, T.M., et al. (2021) Systemic Hyperthermia in Traumatic Brain Injury-Relation to Intracranial Pressure Dynamics, Cerebral Energy Metabolism, and Clinical Outcome. Journal of Neurosurgical Anesthesiology, 33, 329-336. [Google Scholar] [CrossRef]
|