|
[1]
|
Northway, W.J., Rosan, R.C. and Porter, D.Y. (1967) Pulmonary Disease Following Respirator Therapy of Hyaline-Membrane Disease. Bronchopulmonary Dysplasia. New England Journal of Medicine, 276, 357-368. [Google Scholar] [CrossRef]
|
|
[2]
|
Bonadies, L., Zaramella, P., Porzionato, A., et al. (2020) Present and Future of Bronchopulmonary Dysplasia. Journal of Clinical Medicine, 9, Article No. 1539. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Collins, J., Tibboel, D., De Kleer, I.M., et al. (2017) The Future of Bronchopulmonary Dysplasia: Emerging Pathophysiological Concepts and Potential New Avenues of Treatment. Frontiers in Medicine, 4, Article No. 61. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Steinhorn, R., Davis, J.M., Göpel, W., et al. (2017) Chronic Pulmonary Insufficiency of Prematurity: Developing Optimal Endpoints for Drug Development. The Journal of Pediatrics, 191, 15-21.E1. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Abman, S.H., Bancalari, E. and Jobe, A. (2017) The Evolution of Bronchopulmonary Dysplasia after 50 Years. American Journal of Respiratory and Critical Care Medicine, 195, 421-424. [Google Scholar] [CrossRef]
|
|
[6]
|
Berg, G., Rybakova, D., Fischer, D., et al. (2020) Microbiome Definition Re-Visited: Old Concepts and New Challenges. Microbiome, 8, Article No. 103. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
The Human Microbiome Project Consortium (2012) Structure, Function and Diversity of the Healthy Human Microbiome. Nature, 486, 207-214. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Gevers, D., Knight, R., Petrosino, J.F., et al. (2012) The Human Microbiome Project: A Community Resource for the Healthy Human Microbiome. PLoS Biology, 10, Article ID: e1001377. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Barcik, W., Boutin, R., Sokolowska, M., et al. (2020) The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity, 52, 241-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Hilty, M., Burke, C., Pedro, H., et al. (2010) Disordered Microbial Communities in Asthmatic Airways. PLoS ONE, 5, Article ID: e8578. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Dickson, R.P. and Huffnagle, G.B. (2015) The Lung Microbiome: New Principles for Respiratory Bacteriology in Health and Disease. PLoS Pathogens, 11, Article ID: e1004923. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Gallacher, D.J. and Kotecha, S. (2016) Respiratory Microbiome of New-Born Infants. Frontiers in Pediatrics, 4, Article No. 10. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Gallacher, D., Mitchell, E., Alber, D., et al. (2020) Dissimilarity of the Gut-Lung Axis and Dysbiosis of the Lower Airways in Ventilated Preterm Infants. European Respiratory Journal, 55, Article ID: 1901909. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lal, C.V., Travers, C., Aghai, Z.H., et al. (2016) The Airway Microbiome at Birth. Scientific Reports, 6, Article ID: 31023. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lohmann, P., Luna, R.A., Hollister, E.B., et al. (2014) The Airway Microbiome of Intubated Premature Infants: Characteristics and Changes That Predict the Development of Bronchopulmonary Dysplasia. Pediatric Research, 76, 294-301. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Mourani, P.M., Harris, J.K., Sontag, M.K., et al. (2011) Molecular Identification of Bacteria in Tracheal Aspirate Fluid from Mechanically Ventilated Preterm Infants. PLoS ONE, 6, Article ID: e25959. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Payne, M.S., Goss, K.C., Connett, G.J., et al. (2010) Molecular Microbiological Characterization of Preterm Neonates at Risk of Bronchopulmonary Dysplasia. Pediatric Research, 67, 412-418. [Google Scholar] [CrossRef]
|
|
[18]
|
Imamura, T., Sato, M., Go, H., et al. (2017) The Microbiome of the Lower Respiratory Tract in Premature Infants with and without Severe Bronchopulmonary Dysplasia. American Journal of Perinatology, 34, 80-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Al, A.D., Danopoulos, S., Grubbs, B., et al. (2020) Human Fetal Lungs Harbor a Microbiome Signature. American Journal of Respiratory and Critical Care Medicine, 201, 1002-1006. [Google Scholar] [CrossRef]
|
|
[20]
|
Dominguez-Bello, M.G., Costello, E.K., Contreras, M., et al. (2010) Delivery Mode Shapes the Acquisition and Structure of the Initial Microbiota across Multiple Body Habitats in Newborns. Proceedings of the National Academy of Sciences of the United States of America, 107, 11971-11975. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Aagaard, K., Ma, J., Antony, K.M., et al. (2014) The Placenta Harbors A Unique Microbiome. Science Translational Medicine, 6, Article No. 237ra65. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
DiGiulio, D.B., Romero, R., Amogan, H.P., et al. (2008) Microbial Prevalence, Diversity and Abundance in Amniotic Fluid during Preterm Labor: A Molecular and Culture-Based Investigation. PLoS ONE, 3, Article No. e3056. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lauer, T., Behnke, J., Oehmke, F., et al. (2020) Bacterial Colonization within the First Six Weeks of Life and Pulmonary Outcome in Preterm Infants < 1000 G. Journal of Clinical Medicine, 9, Article No. 2240. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Martinez, K.N., Romano-Keeler, J., Zackular, J.P., et al. (2018) Bacterial DNA Is Present in the Fetal Intestine and Overlaps with That in the Placenta in Mice. PLoS ONE, 13, Article ID: e0197439. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Prince, A.L., Ma, J., Kannan, P.S., et al. (2016) The Placental Membrane Microbiome Is Altered among Subjects with Spontaneous Preterm Birth with and without Chorioamnionitis. American Journal of Obstetrics and Gynecology, 214, 627.E1-627.E16. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Marsland, B.J. and Gollwitzer, E.S. (2014) Host-Microorganism Interactions in Lung Diseases. Nature Reviews Immunology, 14, 827-835. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Bushman, F.D. (2019) De-Discovery of the Placenta Microbiome. American Journal of Obstetrics and Gynecology, 220, 213-214. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
de Goffau, M.C., Lager, S., Sovio, U., et al. (2019) Human Placenta Has No Microbiome But Can Contain Potential Pathogens. Nature, 572, 329-334. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Bosch, A., Levin, E., Van Houten, M.A., et al. (2016) Development of Upper Respiratory Tract Microbiota in Infancy Is Affected By Mode of Delivery. eBioMedicine, 9, 336-345. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Chu, D.M., Ma, J., Prince, A.L., et al. (2017) Maturation of the Infant Microbiome Community Structure and Function across Multiple Body Sites and in Relation To Mode of Delivery. Nature Medicine, 23, 314-326. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Satokari, R., Grönroos, T., Laitinen, K., et al. (2009) Bifidobacterium and Lactobacillus DNA in the Human Placenta. Letters in Applied Microbiology, 48, 8-12. [Google Scholar] [CrossRef]
|
|
[32]
|
Wagner, B.D., Sontag, M.K., Harris, J.K., et al. (2017) Airway Microbial Community Turnover Differs By BPD Severity in Ventilated Preterm Infants. PLoS ONE, 12, Article ID: e0170120. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ericsson, A.C. (2020) Bronchopulmonary Dysplasia: A Crime of Opportunity? European Respiratory Journal, 55, Article ID: 2000551. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Jeurink, P.V., Van Bergenhenegouwen, J., Jiménez, E., et al. (2013) Human Milk: A Source of More Life Than We Imagine. Benef Microbes, 4, 17-30. [Google Scholar] [CrossRef]
|
|
[35]
|
Lal, C.V., Kandasamy, J., Dolma, K., et al. (2018) Early Airway Microbial Metagenomic and Metabolomic Signatures Are Associated with Development of Severe Bronchopulmonary Dysplasia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 315, L810-L815. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Biesbroek, G., Bosch, A.A., Wang, X., et al. (2014) the Impact of Breastfeeding on Nasopharyngeal Microbial Communities in Infants. American Journal of Respiratory and Critical Care Medicine, 190, 298-308. [Google Scholar] [CrossRef]
|
|
[37]
|
Huang, J., Zhang, L., Tang, J., et al. (2019) Human Milk as a Protective Factor for Bronchopulmonary Dysplasia: A Systematic Review and Meta-Analysis. Archives of Disease in Childhood: Fetal and Neonatal Edition, 104, F128-F136. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Pammi, M., Lal, C.V., Wagner, B.D., et al. (2019) Airway Microbiome and Development of Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review. The Journal of Pediatrics, 204, 126-133.E2. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Willis, K.A., Stewart, J.D. and Ambalavanan, N. (2020) Recent Advances in Understanding the Ecology of the Lung Microbiota and Deciphering the Gut-Lung Axis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 319, L710-L716. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Cope, E.K. and Lynch, S.V. (2015) Novel Microbiome-Based Therapeutics for Chronic Rhinosinusitis. Current Allergy and Asthma Reports, 15, Article No. 9. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Gentle, S.J. and Lal, C.V. (2020) Predicting BPD: Lessons Learned from the Airway Microbiome of Preterm Infants. Frontiers in Pediatrics, 7, Article No. 564. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Mendez, R., Banerjee, S., Bhattacharya, S.K., et al. (2019) Lung Inflammation and Disease: A Perspective on Microbial Homeostasis and Metabolism. IUBMB Life, 71, 152-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Petersen, C. and Round, J.L. (2014) Defining Dysbiosis and Its Influence on Host Immunity and Disease. Cellular Microbiology, 16, 1024-1033. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Yang, D., Xing, Y., Song, X., et al. (2020) The Impact of Lung Microbiota Dysbiosis on Inflammation. Immunology, 159, 156-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Yang, K. and Dong, W. (2020) Perspectives on Probiotics and Bronchopulmonary Dysplasia. Frontiers in Pediatrics, 8, Article ID: 570247. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Taylor, S.L., Simpson, J.L. and Rogers, G.B. (2021) The Influence of Early-Life Microbial Exposures on Long-Term Respiratory Health. Paediatric Respiratory Reviews, 40, 15-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Dickson, R.P., Erb-Downward, J.R., Falkowski, N.R., et al. (2018) The Lung Microbiota of Healthy Mice Are Highly Variable, Cluster By Environment, and Reflect Variation in Baseline Lung Innate Immunity. American Journal of Respiratory and Critical Care Medicine, 198, 497-508. [Google Scholar] [CrossRef]
|
|
[48]
|
Toldi, G., Hummler, H. and Pillay, T. (2021) T Lymphocytes, Multi-Omic Interactions and Bronchopulmonary Dysplasia. Frontiers in Pediatrics, 9, Article ID: 694034. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Lal, C.V., Olave, N., Travers, C., et al. (2018) Exosomal MicroRNA Predicts and Protects against Severe Bronchopulmonary Dysplasia in Extremely Premature Infants. JCI Insight, 3, Article ID: e93994. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Capasso, L., Vento, G., Loddo, C., et al. (2019) Oxidative Stress and Bronchopulmonary Dysplasia: Evidences from Microbiomics, Metabolomics, and Proteomics. Frontiers in Pediatrics, 7, Article No. 30. [Google Scholar] [CrossRef] [PubMed]
|