|
[1]
|
Krone, U., Moller, K. and Shulz, E. (1997) Pyrotechnic Smoke Composition for Camouflage Purposes. US Patent No. US5656794A.
|
|
[2]
|
关华. 抗红外/毫米波双模发烟剂技术研究[D]: [博士学位论文]. 南京: 南京理工大学化工系, 2005.
|
|
[3]
|
Kamat, P.V. (2002) Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles. Journal of Physical Chemistry B, 106, 7729-7744. [Google Scholar] [CrossRef]
|
|
[4]
|
Wang H., Daniel W.B., Peter N, and Naomi J.H. (2007) Plasmonic Nanostructures: Artificial Molecules. Accounts of Chemical Research, 40, 53-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Prodan, E., Radloff, C., Halas N.J. and Nordlander, P. (2003) A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science, 302, 419-422. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Bober, K., Giles, R.H. and Waldman, J. (1997) Tailoring the Microwave Permittivity and Permeability of Composite Materials. International Journal of Infrared & Millimeter Waves, 18, 101-123. [Google Scholar] [CrossRef]
|
|
[7]
|
Che, R.C., Peng, L., Duan, X., Chen, Q. and Liang, X. (2004) Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes. Advanced Materials, 16, 401-405. [Google Scholar] [CrossRef]
|
|
[8]
|
Bond, T.C. and Bergstrom, R.W. (2006) Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol Science and Technology, 40, 27-67. [Google Scholar] [CrossRef]
|
|
[9]
|
Pjesky, S.C. and Maghirang, R.G. (2011) Infrared Extinction Properties of Nanostructured and Conventional Particles. Particulate Science and Technology, 30, 103-118. [Google Scholar] [CrossRef]
|
|
[10]
|
Duan, R., Cui, G.M., Zhu, Q.Z. and Li, B. (2017) The Radiation Property of Activated Carbon Particles in the Visible to Infrared Spectrum. Solar Energy, 157, 667-671. [Google Scholar] [CrossRef]
|
|
[11]
|
Jia, K., Rui, Z., Zhong, J. and Liu, X. (2010) Preparation and Microwave Absorption Properties of Loose Nanoscale Fe3O4 Spheres. Journal of Magnetism & Magnetic Materials, 322, 2167-2171. [Google Scholar] [CrossRef]
|
|
[12]
|
Li, S.C., Zhou, Z.N., Zhang, T.L., Jiang, G.T. and Su, R.Y. (2014) Synthesis and Characterization of Ag/Fe3O4 Electromagnetic Shielding Particles. Journal of Magnetism and Magnetic Materials, 358-359, 27-31. [Google Scholar] [CrossRef]
|
|
[13]
|
Peng, Z.W., Hwang, J.Y. and Andriese, M. (2013) Microwave Power Absorption Characteristics of Ferrites. IEEE Transactions on Magnetics, 49, 1163-1166. [Google Scholar] [CrossRef]
|
|
[14]
|
Zhou, G.M., Wang, D.W., Li, F., Zhang, L.L., Li, N., Wu, Z.S., Wen, L., Lu, G.Q. and Cheng, H.M. (2010) Graphene- Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chemistry of Materials, 22, 5306-5313. [Google Scholar] [CrossRef]
|
|
[15]
|
Wang, P., Gao, M.G., Pan, H.G., Zhang, J.L., Liang, C., Wang, J.H., Zhou, P. and Liu, Y.F.(2013) A Facile Synthesis of Fe3O4/C Composite with High Cycle Stability as Anode Material for Lithium-Ion Batteries. Journal of Power Sources, 239, 466-474. [Google Scholar] [CrossRef]
|
|
[16]
|
Du, Y.C., Liu, W.W., Qiang, R., Wang, Y., Han, X.J., Ma, J. and Xu, P. (2014) Shell Thickness-Dependent Microwave Absorption of Core-Shell Fe3O4@C Composites. ACS Ap-plied Materials & Interfaces, 6, 12997-13006. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hou, Y.H., Yuan, H.L., Chen, H., Shen, J.H. and Li, L.C. (2017) Con-trolled Fabrication and Microwave Absorbing Mechanism of Hollow Fe3O4@C Microspheres. Science China Chemistry, 60, 740-747. [Google Scholar] [CrossRef]
|
|
[18]
|
Huang, Y., Xing, W.J., Fan, J.L., Dai, J.X., Liu, Q., Hu, F. and Xu, G.L. (2020) Preparation and Microwave Absorption Properties of the Hollow ZnFe2O4@C Composites with Core-Shell Structure. Journal of Magnetism and Magnetic Materials, 502, 166543. [Google Scholar] [CrossRef]
|
|
[19]
|
Xue, F.M., Yang, S.T., Jin, X.Y., Li, T.T., Wang, R.J., Liu, X.Y., Bai, Y.T., Chen, L.Y., Ming, Z. and Yang. H. (2016) One-Pot Modification of Fe3O4 to Prepare Fe3O4/SiO2/C Nanoparticles and Their Catalytic Activity in Fenton-Like Process for Dye Decolouration. Micro. & Nano. Letters, 11, 675-679. [Google Scholar] [CrossRef]
|
|
[20]
|
Liu, X.Y., Sun, C., Chen, L.Y., Yang, H., Ming, Z., Bai, Y.T., Feng, S.C. and Yang, S.T. (2018) Decoloration of Methylene Blue by Heterogeneous Fenton-Like Oxidation on Fe3O4/SiO2/C Nanospheres in Neutral Environment. Materials Chemistry and Physics, 213, 231-238. [Google Scholar] [CrossRef]
|
|
[21]
|
Shi, Z.N., Xu, C., Lu, P., Fan, L., Liu, Y.N., Wang, Y.X., Liu, L. and Li, L.(2018) Preparation and the Adsorption Ability of Thiolated Magnetic Core-Shell Fe3O4@SiO2@C-SH for Removing Hg2+ in Water Solution. Materials Letters, 225, 130-133. [Google Scholar] [CrossRef]
|
|
[22]
|
Maddah, B., Sabouri, A. and Hasanzadeh, M. (2017) Magnetic Solid-Phase Extraction of Oxadiazon and Profenofos from Environmental Water Using Magnetite Fe3O4@SiO2-C-18 Nanoparticles, Journal of Polymers and the Environment, 25, 770-780. [Google Scholar] [CrossRef]
|
|
[23]
|
Xie, H.J., Wu, Z.L., Wang, Z.Y., Lu, J.M., Li, Y.Z., Cao, Y.L. and Cheng, H. (2020) Facile Fabrication of Acid-Resistant and Hydrophobic Fe3O4@SiO2@C Magnetic Particles for Valid Oil-Water Separation Application. Surfaces and Interfaces, 21, Article ID: 10065. [Google Scholar] [CrossRef]
|
|
[24]
|
Kaushik, A., Khan, R., Solanki, P.R., Pandey, P., Alam, J., Ahmad, S. and Malhotra, B.D. (2008) Iron Oxide Nanoparticles-Chitosan Composite Based Glucose Biosensor. Bio-sensors and Bioelectronics, 24, 676-683. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Chen, Y.P., Zhang, J.G., Wang, Z.X. and Zhou, Z.N. (2019) Solvothermal Synthesis of Size-Controlled Monodispersed Superparamagnetic Iron Oxide Nanoparticles, Applied Sciences, 9, Article No. 5157. [Google Scholar] [CrossRef]
|
|
[26]
|
Chen,Y.P., Li, S.C., Wei, X.B., Tang, R.Z. and Zhou, Z.N.(2018) Infra-red Extinction and Microwave Absorption Properties of Hybrid Fe3O4@SiO2@Ag Nanospheres Synthesized via a Facile Seed-Mediated Growth Route. Nanotechnology, 29, Article ID: 375703. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Livesey, M., Stack, J.F., Costen, F., Nanri, T., Nakashima, N. and Fujino, S. (2012) Development of a CUDA Implementation of the 3D FDTD Method. IEEE Antennas and Propagation Magazine, 54, 186-195. [Google Scholar] [CrossRef]
|
|
[28]
|
Zhang, L.S., Zhao, F., Li, Z.P., Fang, Y. and Wang, P.J. (2016) Tailoring of Localized Surface Plasmon Resonances of Core-Shell Au@Ag Nanorods by Changing the Thickness of Ag Shell. Plasmonics, 11, 1511-1517. [Google Scholar] [CrossRef]
|
|
[29]
|
Chen, M.J., He, Y.R., Wang, X.Z. and Hu, Y.W. (2018) Complementary Enhanced Solar Thermal Conversion Performance of Core-Shell Nanoparticles. Applied Energy, 211, 735-742. [Google Scholar] [CrossRef]
|
|
[30]
|
Bohren, C.F. and Huffman, D.R. (1983) Absorption and Scattering of Light by Small Particles. Wiley, New York, 99-103.
|
|
[31]
|
Chikazumi, S. (1997) Physics of Ferromagnetism. Clarendon Press, Oxford, 68.
|
|
[32]
|
Schlegel, A., Alvarado, S. and Wachter, P. (1979) Optical Properties of Magnetite (Fe3O4). Journal of Physics C: Solid State Physics, 12, 1157-1164. [Google Scholar] [CrossRef]
|
|
[33]
|
Polyanskiy, M.N. (2016) Refractive Index Database. https://refractiveindex.info
|