|
[1]
|
Joynt, R. (1990) Upward Curvature of Hc2 in High-Tc Superconductors: Possible Evidence for s + d Pairing. Physical Review B, 41, 4271-4277. [Google Scholar] [CrossRef]
|
|
[2]
|
Ren, Y., Xu, J.H. and Ting, C.S. (1996) Ginzburg-Landau Equations for Mixed s+d Symmetry Superconductors. Physical Review B, 53, 2249-2252. [Google Scholar] [CrossRef]
|
|
[3]
|
Feder, D.L. and Kallin, C. (1997) Microscopic Derivation of the Ginzburg-Landau Equations for a d-Wave Superconductor. Physical Review B, 55, 559-574. [Google Scholar] [CrossRef]
|
|
[4]
|
Dai, M.C. and Yang, T.J. (1999) The Anomalous Hall Effect for a Mixed s-Wave and d-Wave Symmetry Superconductor. Solid State Communications, 110, 425-430. [Google Scholar] [CrossRef]
|
|
[5]
|
Xu, J.H., Ren, Y. and Ting, C.S. (1996) Structures of Single Vortex and Vortex Lattice in a d-Wave Superconductor. Physical Review B, 53, 2991-2993. [Google Scholar] [CrossRef]
|
|
[6]
|
Du, Q. (1999) Studies of Ginzburg-Landau Model for d-Wave Superconductors. SIAM Journal on Applied Mathematics, 59, 1225-1250. [Google Scholar] [CrossRef]
|
|
[7]
|
Feng, X.B. and Neilan, M. (2010) Finite Element Methods for a Bi-Wave Equation Modeling d-Wave Superconductors. Journal of Computational Mathematics, 28, 331-353. [Google Scholar] [CrossRef]
|
|
[8]
|
Fushchych, W.I. and Roman, O.V. (1996) Symmetry Reduction and Some Exact Solutions of Nonlinear Bi-Wave Equations. Reports on Mathematical Physics, 37, 267-281. [Google Scholar] [CrossRef]
|
|
[9]
|
Feng, X.B. and Neilan, M. (2010) Discontinuous Finite Element Methods for a Bi-Wave Equa- tion Modeling d-Wave Superconductors. Mathematics of Computation, 80, 1303-1333. [Google Scholar] [CrossRef]
|
|
[10]
|
Shi, D.Y. and Wu, Y.M. (2018) Uniform Superconvergence Analysis of Ciarlet-Raviart Scheme for Bi-Wave Singular Perturbation Problem. Mathematical Methods in the Applied Sciences, 41, 7906-7914. [Google Scholar] [CrossRef]
|
|
[11]
|
Shi, D.Y. and Wu, Y.M. (2020) Uniformly Superconvergent Analysis of an Efficient Two- Grid Method for Nonlinear Bi-Wave Singular Perturbation Problem. Applied Mathematics and Computation, 367, Article ID: 124772. [Google Scholar] [CrossRef]
|
|
[12]
|
Wu, Y.M. and Shi, D.Y. (2021) Quasi-Uniform Convergence Analysis of a Modified Penal- ty Finite Element Method for Nonlinear Singularly Perturbed Bi-Wave Problem. Numerical Methods for Partial Differential Equations, 37, 1766-1780. [Google Scholar] [CrossRef]
|
|
[13]
|
Shi, D.Y. and Wu, Y.M. (2021) Quasi-Uniform Convergence Analysis of Rectangular Morley Element for the Singularly Perturbed Bi-Wave Equation. Applied Numerical Mathematics, 161, 169-177. [Google Scholar] [CrossRef]
|
|
[14]
|
林群, 严宁宁. 高效有限元构造与分析[M]. 保定: 河北大学出版社, 1996.
|
|
[15]
|
Browder, F.E. and Finn, R. (1965) Existence and Uniqueness Theorems for Solutions of Non- linear Boundary Value Problems. Proceedings of Symposia in Applied Mathematics, 17, 24-49. [Google Scholar] [CrossRef]
|
|
[16]
|
Lin, J.F. and Luo, Q. (2004) Superconvergence for the Bogner-Fox-Schmit Element. Compu- tational Mathematics, 26, 47-50. [Google Scholar] [CrossRef]
|