|
[1]
|
刘宗超, 李哲轩, 张阳, 周彤, 张婧莹, 游伟程, 潘凯枫, 李文庆. 2020全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2021, 7(2): 1-13.
|
|
[2]
|
Jacobs, B.L., Lee, C.T. and Montie, J.E. (2010) Bladder Cancer in 2010: How Far Have We Come? CA: A Cancer Journal for Clinicians, 60, 244-272. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Thomsen, M.B., Nordentoft, I., Lamy, P., Høyer, S., Vang, S., Hedegaard, J., Borre, M., Jensen, J.B., Ørntoft, T.F. and Dyrskjøt, L. (2016) Spatial and Temporal Clonal Evolution during Development of Metastatic Urothelial Carcinoma. Molecular Oncology, 10, 1450-1460. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
那彦群, 叶章群, 孙颖浩. 中国泌尿外科疾病诊断治疗指南[M]. 北京: 人民卫生出版社, 2013: 21-28.
|
|
[5]
|
Davey, M.G., Hynes, S.O., Kerin, M.J., Miller, N. and Lowery, A.J. (2021) Ki-67 as a Prognostic Biomarker in Invasive Breast Cancer. Cancers, 13, Article No. 4455. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Boegemann, M. and Krabbe, L.M. (2020) Prognostic Implications of Immunohistochemical Biomarkers in Non-Muscle-Invasive Blad Cancer and Muscle-Invasive Bladder Cancer. Mini-Reviews in Medicinal Chemistry, 20, 1133-1152. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Shinohara, N. and Koyanagi, T. (2002) Ras Signal Transduction in Carcinogenesis and Progression of Bladder Cancer: Molecular Target for Treatment? Urological Research, 30, 273-281. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
曹明晓, 姜立新. 肽脯氨酰基顺反异构酶Pin1:恶性肿瘤形成的催化剂[J]. 中华普通外科学文献(电子版), 2016, 10(2): 150-153.
|
|
[9]
|
Lu, K.P. (2004) Pinning Down Cell Signaling, Cancer and Alzheimer’s Disease. Trends in Biochemical Sciences, 29, 200-209. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
陈杨. PIN1在胃癌中高表达的机制及其在胃癌侵袭转移中的作用研究[D]: [硕士学位论文]. 重庆: 西南大学, 2020.
|
|
[11]
|
Yaffe, M.B., Schutkowski, M., Shen, M., Zhou, X.Z., Stukenberg, P.T., Rahfeld, J.U., Xu, J., Kuang, J., Kirschner, M.W., Fischer, G., Cantley, L.C. and Lu, K.P. (1997) Sequence-Specific and Phosphorylation-Dependent Proline Isomerization: A Potential Mitotic Regulatory Mechanism. Science, 278, 1957-1960. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Liou, Y.C., Zhou, X.Z. and Lu, K.P. (2011) Prolyl Isomerase Pin1 as a Molecular Switch to Determine the Fate of Phosphoproteins. Trends in Biochemical Sciences, 36, 501-514. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lu, K.P., Liou, Y.C. and Zhou, X.Z. (2002) Pinning down Proline-Directed Phosphorylation Signaling. Trends in Cell Biology, 12, 164-172. [Google Scholar] [CrossRef]
|
|
[14]
|
Lu, K.P. and Zhou, X.Z. (2007) The Prolyl Isomerase PIN1: A Pivotal New Twist in Phosphorylation Signalling and Disease. Nature Reviews Molecular Cell Biology, 8, 904-916. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
董瑞杰, 笪宇蓉. 脯氨酰顺反异构酶Pin1和免疫炎症[J]. 天津医科大学学报,2021, 27(4): 431-434.
|
|
[16]
|
Lu, K.P., Hanes, S.D. and Hunter, T. (1996) A Human Peptidyl-Prolyl Isomerase Essential for Regulation of Mitosis. Nature, 380, 544-547. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lin, M.C., Lin, J.J., Hsu, C.L., Juan, H.F., Lou, P.J. and Huang, M.C. (2017) GATA3 Interacts with and Stabilizes HIF-1α to Enhance Cancer Cell Invasiveness. Oncogene, 36, 4243-4252. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Matena, A., Rehic, E., Hönig, D., Kamba, B. and Bayer, P. (2018) Structure and Function of the Human Parvulins Pin1 and Par14/17. Biological Chemistry, 399, 101-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Lee, Y.M. and Liou, Y.C. (2018) Gears-In-Motion: The Interplay of WW. and PPIase Domains in Pin1. Frontiers in Oncology, 8, Article No. 469. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Bao, L., Kimzey, A., Sauter, G., Sowadski, J.M., Lu, K.P. and Wang, D.G. (2004) Prevalent Overexpression of Prolyl Isomerase Pin1 in Human Cancers. The American Journal of Pathology, 164, 1727-1737. [Google Scholar] [CrossRef]
|
|
[21]
|
He, J., Zhou, F., Shao, K., Hang, J., Wang, H., Rayburn, E., Xiao, Z.X., Lee, S.W., Xue, Q., Feng, X.L., Shi, S.S., Zhang, C.Y. and Zhang, S. (2007) Overexpression of Pin1 in Non-Small Cell Lung Cancer (NSCLC) and Its Correlation with Lymph Node Metastases. Lung Cancer, 56, 51-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wulf, G., Garg, P., Liou, Y.C., Iglehart, D. and Lu, K.P. (2004) Modeling Breast Cancer in Vivo and ex Vivo Reveals an Essential Role of Pin1 in Tumorigenesis. The EMBO Journal, 23, 3397-407. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Inoue, M.K., Nakatsu, Y., Yamamotoya, T., Hasei, S., Kanamoto, M., Naitou, M., Matsunaga, Y., Sakoda, H., Fujishiro, M., Ono, H., Kushiyama, A. and Asano, T. (2019) Pin1 Plays Essential Roles in NASH Development by Modulating Multiple Target Proteins. Cells, 8, Article No. 1545. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Nevins, J.R. (2001) The Rb/E2F Pathway and Cancer. Human Molecular Genetics, 10, 699-703. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ryo, A., Liou, Y.C., Wulf, G., Nakamura, M., Lee, S.W. and Lu, K.P. (2002) PIN1 is an E2F Target Gene Essential for Neu/Ras-Induced Transformation of Mammary Epithelial Cells. Molecular and Cellular Biology, 22, 5281-5295. [Google Scholar] [CrossRef]
|
|
[26]
|
Ryo, A., Suizu, F., Yoshida, Y., Perrem, K., Liou, Y.C., Wulf, G., Rottapel, R., Yamaoka, S. and Lu, K.P. (2003) Regulation of NF-kappaB Signaling by Pin1-Dependent Prolyl Isomerization and Ubiquitin-Mediated Proteolysis of p65/RelA. Molecular Cell, 12, 1413-1426. [Google Scholar] [CrossRef]
|
|
[27]
|
Rustighi, A., Tiberi, L., Soldano, A., Napoli, M., Nuciforo, P., Rosato, A., Kaplan, F., Capobianco, A., Pece, S., Di Fiore, P.P. and Del Sal, G. (2009) The Prolyl-Isomerase Pin1 Is a Notch1 Target That Enhances Notch1 Activation in Cancer. Nature Cell Biology, 11, 133-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Nakatsu, Y., Matsunaga, Y., Yamamotoya, T., Ueda, K., Inoue, Y., Mori, K., Sakoda, H., Fujishiro, M., Ono, H., Kushiyama, A. and Asano, T. (2016) Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations. International Journal of Molecular Sciences, 17, Article No. 1495. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Gu, Y., Lindner, J., Kumar, A., Yuan, W. and Magnuson, M.A. (2011) Rictor/mTORC2 Is Essential for Maintaining a Balance between Beta-Cell Proliferation and Cell Size. Diabetes, 60, 827-837. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wang, Y., Li, Y., Yue, M., Wang, J., Kumar, S., Wechsler-Reya, R.J., Zhang, Z., Ogawa, Y., Kellis, M., Duester, G. and Zhao, J.C. (2018) N6-Methyladenosine RNA Modification Regulates Embryonic Neural Stem Cell Self-Renewal through Histone Modifications. Nature Neuroscience, 21, 195-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Raleigh, D.R., Choksi, P.K., Krup, A.L., Mayer, W., Santos, N. and Reiter, J.F. (2018) Hedgehog Signaling Drives Medulloblastoma Growth via CDK6. Journal of Clinical Investigation, 128, 120-124. [Google Scholar] [CrossRef]
|
|
[32]
|
Cheng, C.W. and Tse, E. (2018) PIN1 in Cell Cycle Control and Cancer. Frontiers in Pharmacology, 9, Article No. 1367. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
李红雨, 石小燕, 徐茜, 邓东锐, 王世宣, 卢运萍, 马丁. Pin1在宫颈癌中过表达及其与Ki67关系的研究[J]. 中国肿瘤临床, 2006, 33(4): 181-185.
|
|
[34]
|
Pu, W., Zheng, Y. and Peng, Y. (2020) Prolyl Isomerase Pin1 in Human Cancer: Function, Mechanism, and Significance. Frontiers in Cell and Developmental Biology, 8, Article No. 168. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Jiang, L., Cao, M., Hu, J. and Chen, J. (2016) Expression of PIN1 in Gastrointestinal Stromal Tumours and its Clinical Significance. Anticancer Research, 36, 1275-1280.
|
|
[36]
|
Yu, J.H., Im, C.Y. and Min, S.H. (2020) Function of PIN1 in Cancer Development and Its Inhibitors as Cancer Therapeutics. Frontiers in Cell and Developmental Biology, 8, Article No. 120. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wulf, G.M., Ryo, A., Wulf, G.G., et al. (2001) Pin1 Is Overexpressed in Breast Cancer and Cooperates with Ras Signaling in Increasing the Transcriptional Activity of C-Jun towards Cyclin D1. The EMBO Journal, 20, 3459-3472. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Pang, R.W., Lee, T.K., Man, K., Poon, R.T., Fan, S.T., Kwong, Y.L. and Tse, E. (2006) PIN1 Expression Contributes to Hepatic Carcinogenesis. The Journal of Pathology, 210, 19-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ayala, G., Wang, D., Wulf, G., Frolov, A., Li, R., Sowadski, J., Wheeler, T.M., Lu, K.P. and Bao, L. (2003) The Prolyl Isomerase Pin1 Is a Novel Prognostic Marker in Human Prostate Cancer. Cancer Research, 63, 6244-6251.
|
|
[40]
|
Chen, S.Y., Wulf, G., Zhou, X.Z., Rubin, M.A., Lu, K.P. and Balk, S.P. (2006) Activation of Beta-Catenin Signaling in Prostate Cancer by Peptidyl-Prolyl Isomerase Pin1-Mediated Abrogation of the Androgen Receptor-Beta-Catenin Interaction. Molecular and Cellular Biology, 26, 929-939. [Google Scholar] [CrossRef]
|
|
[41]
|
Lu, Z. and Hunter, T. (2014) Prolyl Isomerase Pin1 in Cancer. Cell Research, 24, 1033-1049. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Rioux-Leclercq, N., Turlin, B., Bansard, J., Patard, J., Manunta, A., Moulinoux, J.P., Guillé, F., Ramée, M.P. and Lobel, B. (2000) Value of Immunohistochemical Ki-67 and p53 Determinations as Predictive Factors of Outcome in Renal Cell Carcinoma. Urology, 55, 501-505. [Google Scholar] [CrossRef]
|
|
[44]
|
Shen, T., Yang, L., Zhang, Z., Yu, J., Dai, L., Gao, M., Shang, Z. and Niu, Y. (2019) KIF20A Affects the Prognosis of Bladder Cancer by Promoting the Proliferation and Metastasis of Bladder Cancer Cells. Disease Markers, 2019, Article ID: 4863182. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Ahmad, I., Patel, R., Liu, Y., Singh, L.B., Taketo, M.M., Wu, X.R., Leung, H.Y. and Sansom, O.J. (2011) Ras Mutation Cooperates with β-Catenin Activation to Drive Bladder Tumourigenesis. Cell Death & Disease, 2, Article No. e124. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Zhang, C., Berndt-Paetz, M. and Neuhaus, J. (2020) Identification of Key Biomarkers in Bladder Cancer: Evidence from a Bioinformatics Analysis. Diagnostics, 10, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Koikawa, K., Kibe, S., Suizu, F., Sekino, N., Kim, N., Manz, T.D., Pinch, B.J., Akshinthala, D., Verma, A., Gaglia, G., Nezu, Y., Ke, S., Qiu, C., Ohuchida, K., Oda, Y., Lee, T.H., Wegiel, B., Clohessy, J.G., London, N., Santagata, S., Wulf, G.M., Hidalgo, M., Muthuswamy, S.K., Nakamura, M., Gray, N.S., Zhou, X.Z. and Lu, K.P. (2021) Targeting Pin1 Renders Pancreatic Cancer Eradicable by Synergizing with Immunochemotherapy. Cell, 184, 4753-4771.e27. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Han, C., Wang, Z., Chen, S., Li, L., Xu, Y., Kang, W., Wei, C., Ma, H., Wang, M. and Jin, X. (2021) Berbamine Suppresses the Progression of Bladder Cancer by Modulating the ROS/NF-κB Axis. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 8851763. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Margulis, V., Shariat, S.F., Ashfaq, R., Sagalowsky, A.I. and Lotan, Y. (2006) Ki-67 Is an Independent Predictor of Bladder Cancer Outcome in Patients Treated with Radical Cystectomy for Organ-Confined Disease. Clinical Cancer Research, 12, 7369-7373. [Google Scholar] [CrossRef]
|
|
[50]
|
Man, X., Piao, C., Lin, X., Kong, C., Cui, X. and Jiang, Y. (2019) USP13 Functions as a Tumor Suppressor by Blocking the NF-kB-Mediated PTEN Downregulation in Human Bladder Cancer. Journal of Experimental & Clinical Cancer Research, 38, Article No. 259. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Wang, H., Zang, C., Liu, X.S. and Aster, J.C. (2015) The Role of Notch Receptors in Transcriptional Regulation. Journal of Cellular Physiology, 230, 982-988. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Lu, N., Piao, M.H., Feng, C.S. and Yuan, Y. (2020) Isoflurane Promotes Epithelial-to-Mesenchymal Transition and Metastasis of Bladder Cancer Cells through HIF-1α-β-Catenin/Notch1 Pathways. Life Sciences, 258, Article ID: 118154. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Goriki, A., Seiler, R., Wyatt, A.W., Contreras-Sanz, A., Bhat, A., Matsubara, A., Hayashi, T. and Black, P.C. (2018) Unravelling Disparate Roles of NOTCH in Bladder Cancer. Nature Reviews Urology, 15, 345-357. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
James, N.D., Hussain, S.A., Hall, E., Jenkins, P., Tremlett, J., Rawlings, C., Crundwell, M., Sizer, B., Sreenivasan, T., Hendron, C., Lewis, R., Waters, R. and Huddart, R.A. (2012) BC2001 Investigators. Radiotherapy with or without Chemotherapy in Muscle-Invasive Bladder Cancer. The New England Journal of Medicine, 366, 1477-1488. [Google Scholar] [CrossRef]
|
|
[55]
|
Tran, L., Xiao, J.F., Agarwal, N., Duex, J.E. and Theodorescu, D. (2021) Advances in Bladder Cancer Biology and Therapy. Nature Reviews Cancer, 21, 104-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Farina, M.S., Lundgren, K.T. and Bellmunt, J. (2017) Immunotherapy in Urothelial Cancer: Recent Results and Future Perspectives. Drugs, 77, 1077-1089. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Wołącewicz, M., Hrynkiewicz, R., Grywalska, E., Suchojad, T., Leksowski, T., Roliński, J. and Niedźwiedzka-Rystwej, P. (2020) Immunotherapy in Bladder Cancer: Current Methods and Future Perspectives. Cancers, 12, Article No. 1181. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Cheng, C.W., Leong, K.W. and Tse, E. (2016) Understanding the Role of PIN1 in Hepatocellular Carcinoma. World Journal of Gastroenterology, 22, 9921-9932. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Pu, W., Li, J., Zheng, Y., Shen, X., Fan, X., Zhou, J.K., He, J., Deng, Y., Liu, X., Wang, C., Yang, S., Chen, Q., Liu, L., Zhang, G., Wei, Y.Q. and Peng, Y. (2018) Targeting Pin1 by Inhibitor API-1 Regulates MicroRNA Biogenesis and Suppresses Hepatocellular Carcinoma Development. Hepatology, 68, 547-560. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Wei, S., Kozono, S., Kats, L., Nechama, M., Li, W., Guarnerio, J., et al. (2015) Active Pin1 Is a Key Target of All-Trans Retinoic Acid in Acute Promyelocytic Leukemia and Breast Cancer. Nature Medicine, 21, 457-466. [Google Scholar] [CrossRef] [PubMed]
|