|
[1]
|
Galaris, D., Barbouti, A. and Pantopoulos, K. (2019) Iron Homeostasis and Oxidative Stress: An Intimate Relationship. Biochimica et Biophysica Acta: Molecular Cell Research, 1866, Article ID: 118535. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Vela, D. (2020) Keeping Heart Homeostasis in Check through the Balance of Iron Metabolism. Acta Physiologica, 228, e13324. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Lillo-Moya, J., Rojas-Sole, C., Munoz-Salamanca, D., et al. (2021) Targeting Ferroptosis against Ischemia/Reperfusion Cardiac Injury. Antioxidants (Basel), 10, 667. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ravingerova, T., Kindernay, L., Bartekova, M., et al. (2020) The Molecular Mechanisms of Iron Metabolism and Its Role in Cardiac Dysfunction and Cardioprotection. International Journal of Molecular Sciences, 21, 7889. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Sumneang, N., Siri-Angkul, N., Kumfu, S., et al. (2020) The Effects of Iron Overload on Mitochondrial Function, Mitochondrial Dynamics, and Ferroptosis in Cardiomyocytes. Archives of Biochemistry and Biophysics, 680, Article ID: 108241. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Gujja, P., Rosing, D.R., Tripodi, D.J., et al. (2010) Iron Overload Cardiomyopathy: Better Understanding of an Increasing Disorder. Journal of the American College of Cardiology, 56, 1001-1012. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ren, J.X., Li, C., Yan, X.L., et al. (2021) Crosstalk between Oxidative Stress and Ferroptosis/Oxytosis in Ischemic Stroke: Possible Targets and Molecular Mechanisms. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 6643382. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Tang, M., Huang, Z., Luo, X., et al. (2019) Ferritinophagy Activation and Sideroflexin1-Dependent Mitochondria Iron Overload Is Involved in Apelin-13-Induced Cardiomyocytes Hypertrophy. Free Radical Biology & Medicine, 134, 445-457. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Gammella, E., Recalcati, S., Rybinska, I., et al. (2015) Iron-Induced Damage in Cardiomyopathy: Oxidative-Dependent and Independent Mechanisms. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 230182. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Cornelissen, A., Guo, L., Sakamoto, A., et al. (2019) New Insights into the Role of Iron in Inflammation and Atherosclerosis. EBioMedicine, 47, 598-606. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kali, A., Cokic, I., Tang, R., et al. (2016) Persistent Microvascular Obstruction after Myocardial Infarction Culminates in the Confluence of Ferric Iron Oxide Crystals, Proinflammatory Burden, and Adverse Remodeling. Circulation: Cardiovascular Imaging, 9, e004996. [Google Scholar] [CrossRef]
|
|
[12]
|
Ramachandra, C., Hernandez-Resendiz, S., Crespo-Avilan, G.E., et al. (2020) Mitochondria in Acute Myocardial Infarction and Cardioprotection. EBioMedicine, 57, Article ID: 102884. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Gonzalez-Montero, J., Brito, R., Gajardo, A.I., et al. (2018) Myocardial Reperfusion Injury and Oxidative Stress: Therapeutic Opportunities. World Journal of Cardiology, 10, 74-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Shahzad, S., Mateen, S., Hasan, A., et al. (2019) GRACE Score of Myocardial Infarction Patients Correlates with Oxidative Stress Index, hsCRP and Inflammation. Immunobiology, 224, 433-439. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ju, J., Song, Y.N. and Wang, K. (2021) Mechanism of Ferroptosis: A Potential Target for Cardiovascular Diseases Treatment. Aging and Disease, 12, 261-276. [Google Scholar] [CrossRef]
|
|
[16]
|
Behrouzi, B., Weyers, J.J., Qi, X., et al. (2020) Action of Iron Chelator on Intramyocardial Hemorrhage and Cardiac Remodeling Following Acute Myocardial Infarction. Basic Research in Cardiology, 115, 24. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Turkoglu, C., Gur, M., Seker, T., et al. (2016) The Predictive Value of M30 and Oxidative Stress for Left Ventricular Remodeling in Patients with Anterior ST-Segment Elevation Myocardial Infarction Treated with Primary Percutaneous Coronary Intervention. Coronary Artery Disease, 27, 690-695. [Google Scholar] [CrossRef]
|
|
[18]
|
Tullio, F., Angotti, C., Perrelli, M.G., et al. (2013) Redox Balance and Cardioprotection. Basic Research in Cardiology, 108, 392. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Li, W., Li, W., Leng, Y., et al. (2020) Ferroptosis Is Involved in Diabetes Myocardial Ischemia/Reperfusion Injury through Endoplasmic Reticulum Stress. DNA and Cell Biology, 39, 210-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Reinhold, J., Papadopoulou, C., Baral, R., et al. (2021) Iron Deficiency for Prognosis in Acute Coronary Syndrome—A Systematic Review and Meta-Analysis. International Journal of Cardiology, 328, 46-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Steven, S., Frenis, K., Oelze, M., et al. (2019) Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 7092151. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ertracht, O., Malka, A., Atar, S., et al. (2014) The Mitochondria as a Target for Cardioprotection in Acute Myocardial Ischemia. Pharmacology & Therapeutics, 142, 33-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Garcia, N., Zazueta, C. and Aguilera-Aguirre, L. (2017) Oxidative Stress and Inflammation in Cardiovascular Disease. Oxidative Medicine and Cellular Longevity, 2017, Article ID: 5853238. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Moradi, M., Fariba, F. and Mohasseli, A.S. (2015) Relation between the Serum Ferritin Level and the Risk for Acute Myocardial Infarction. Journal of Research in Health Sciences, 15, 147-151.
|
|
[25]
|
Zeller, T., Waldeyer, C., Ojeda, F., et al. (2018) Adverse Outcome Prediction of Iron Deficiency in Patients with Acute Coronary Syndrome. Biomolecules, 8, 60. [Google Scholar] [CrossRef] [PubMed]
|