|
[1]
|
Baffy, G. (2019) Potential Mechanisms Linking Gut Microbiota and Portal Hypertension. Liver International, 39, 598-609. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Albillos, A., De Gottardi, A. and Rescigno, M. (2020) The Gut-Liver Axis in Liver Disease: Pathophysiological Basis for Therapy. Journal of Hepatology, 72, 558-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Liang, Q., Zhang, M., Hu, Y., Zhang, W., Zhu, P., Chen, Y., et al. (2020) Gut Microbiome Contributes to Liver Fibrosis Impact on T Cell Receptor Immune Repertoire. Frontiers in Microbiology, 11, Article ID: 571847. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zeng, Y., Chen, S., Fu, Y., Wu, W., Chen, T., Chen, J., et al. (2020) Gut Microbiota Dysbiosis in Patients with Hepatitis B Virus-Induced Chronic Liver Disease Covering Chronic Hepatitis, Liver Cirrhosis and Hepatocellular Carcinoma. Journal of Viral Hepatitis, 27, 143-155. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ponziani, F.R., Bhoori, S., Castelli, C., Putignani, L., Rivoltini, L., Del Chierico, F., et al. (2019) Hepatocellular Carcinoma Is Associated with Gut Microbiota Profile and Inflammation in Nonalcoholic Fatty Liver Disease. Hepatology, 69, 107-120. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Bajaj, J.S., Sikaroodi, M., Shamsaddini, A., Henseler, Z., Santiago-Rodriguez, T., Acharya, C., et al. (2021) Interaction of Bacterial Metagenome and Virome in Patients with Cirrhosis and Hepatic Encephalopathy. Gut, 70, 1162-1173. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wan, S., Nie, Y., Zhang, Y., Huang, C. and Zhu, X. (2020) Gut Microbial Dysbiosis Is Associated with Profibrotic Factors in Liver Fibrosis Mice. Frontiers in Cellular and Infection Microbiology, 10, Article No. 18. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Acharya, C. and Bajaj, J.S. (2019) Altered Microbiome in Patients with Cirrhosis and Complications. Clinical Gastroenterology and Hepatology, 17, 307-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wu, P., Zhang, R., Luo, M., Zhang, T., Pan, L., Xu, S., et al. (2020) Liver Injury Impaired 25-Hydroxylation of Vitamin D Suppresses Intestinal Paneth Cell Defensins, Leading to Gut Dysbiosis and Liver Fibrogenesis. American Journal of Physiology: Gastrointestinal and Liver Physiology, 319, G685-G695. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bajaj, J.S., Acharya, C., Fagan, A., White, M.B., Gavis, E., Heuman, D.M., et al (2018) Proton Pump Inhibitor Initiation and Withdrawal Affects Gut Microbiota and Readmission Risk in Cirrhosis. The American Journal of Gastroenterology, 113, 1177-1186. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Bajaj, J.S., Thacker, L.R., Fagan, A., White, M.B., Gavis, E.A., Hylemon, P.B., et al. (2018) Gut Microbial RNA and DNA Analysis Predicts Hospitalizations in Cirrhosis. JCI Insight, 3, e98019. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Bajaj, J.S., Vargas, H.E., Reddy, K.R., Lai, J.C., O’Leary, J.G., Tandon, P., et al. (2019) Association Between Intestinal Microbiota Collected at Hospital Admission and Outcomes of Patients with Cirrhosis. Clinical Gastroenterology and Hepatology, 17, 756-765.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, J., Wang, Y., Zhang, X., Liu, J., Zhang, Q., Zhao, Y., et al. (2017) Gut Microbial Dysbiosis Is Associated with Altered Hepatic Functions and Serum Metabolites in Chronic Hepatitis B Patients. Frontiers in Microbiology, 8, Article No. 2222. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chen, P., Stärkel, P., Turner, J.R., Ho, S.B. and Schnabl, B. (2015) Dysbiosis-Induced Intestinal Inflammation Activates Tumor Necrosis Factor Receptor I and Mediates Alcoholic Liver Disease in Mice. Hepatology, 61, 883-894. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Muñoz, L., Borrero, M.-J., Úbeda, M., Conde, E., Del Campo, R., Rodríguez-Serrano, M., et al. (2019) Intestinal Immune Dysregulation Driven by Dysbiosis Promotes Barrier Disruption and Bacterial Translocation in Rats with Cirrhosis. Hepatology, 70, 925-938. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sorribas, M., Jakob, M.O., Yilmaz, B., Li, H., Stutz, D., Noser, Y., et al. (2019) FXR Modulates the Gut-Vascular Barrier by Regulating the Entry Sites for Bacterial Translocation in Experimental Cirrhosis. Journal of Hepatology, 71, 1126-1140. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Mouries, J., Brescia, P., Silvestri, A., Spadoni, I., Sorribas, M., Wiest, R., et al. (2019) Microbiota-Driven Gut Vascular Barrier Disruption Is a Prerequisite for Non-Alcoholic Steatohepatitis Development. Journal of Hepatology, 71, 1216-1228. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Di Ciaula, A., Baj, J., Garruti, G., Celano, G., De Angelis, M., Wang, H.H., et al. (2020) Liver Steatosis, Gut-Liver Axis, Microbiome and Environmental Factors. A Never-Ending Bidirectional Cross-Talk. Journal of Clinical Medicine, 9, Article No. 2648. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Xiao, Y., Liu, F., Yang, J., Zhong, M., Zhang, E., Li, Y., et al. (2015) Over-Activation of TLR5 Signaling by High-Dose Flagellin Induces Liver Injury in Mice. Cellular & Molecular Immunology, 12, 729-742. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Song, I.J., Yang, Y.M., Inokuchi-Shimizu, S., Roh, Y.S., Yang, L., Seki, E., et al. (2018) The Contribution of Toll-Like Receptor Signaling to the Development of Liver Fibrosis and Cancer in Hepatocyte-Specific TAK1-Deleted Mice. International Journal of Cancer, 142, 81-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Tedesco, D., Thapa, M., Chin, C.Y., Ge, Y., Gong, M., Li, J., et al. (2018) Alterations in Intestinal Microbiota Lead to Production of Interleukin 17 by Intrahepatic γδ T-Cell Receptor-Positive Cells and Pathogenesis of Cholestatic Liver Disease. Gastroenterology, 154, 2178-2193. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Seo, W., Eun, H.S., Kim, S.Y., Yi, H.-S., Lee, Y.-S., Park, S.-H., et al. (2016) Exosome-Mediated Activation of Toll-Like Receptor 3 in Stellate Cells Stimulates Interleukin-17 Production by γδ T Cells in Liver Fibrosis. Hepatology, 64, 616-631. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Schneider, K.M., Albers, S. and Trautwein, C. (2018) Role of Bile Acids in the Gut-Liver Axis. Journal of Hepatology, 68, 1083-1085. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Jiao, N., Baker, S.S., Chapa-Rodriguez, A., Liu, W., Nugent, C.A., Tsompana, M., et al. (2018) Suppressed Hepatic Bile Acid Signalling Despite Elevated Production of Primary and Secondary Bile Acids in NAFLD. Gut, 67, 1881-1891. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Loo, T.M., Kamachi, F., Watanabe, Y., Yoshimoto, S., Kanda, H., Arai, Y., et al. (2017) Gut Microbiota Promotes Obesity-Associated Liver Cancer through PGE2-Mediated Suppression of Antitumor Immunity. Cancer Discovery, 7, 522-538. [Google Scholar] [CrossRef]
|
|
[26]
|
Sun, B., Jia, Y., Hong, J., Sun, Q., Gao, S., Hu, Y., et al. (2018) Sodium Butyrate Ameliorates High-Fat-Diet-Induced Non-Alcoholic Fatty Liver Disease through Peroxisome Proliferator-Activated Receptor α-Mediated Activation of β Oxidation and Suppression of Inflammation. Journal of Agricultural and Food Chemistry, 66, 7633-7642. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Jin, M., Kalainy, S., Baskota, N., Chiang, D., Deehan, E.C., McDougall, C., et al. (2019) Faecal Microbiota From Patients with Cirrhosis Has a Low Capacity to Ferment Non-Digestible Carbohydrates into Short-Chain Fatty Acids. Liver International, 39, 1437-1447. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ren, Z., Li, A., Jiang, J., Zhou, L., Yu, Z., Lu, H., et al. (2019) Gut Microbiome Analysis as a Tool Towards Targeted Non-Invasive Biomarkers for Early Hepatocellular Carcinoma. Gut, 68, 1014-1023. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sheng, L., Jena, P.K., Hu, Y., Liu, H.-X., Nagar, N., Kalanetra, K.M., et al. (2017) Hepatic Inflammation Caused by Dysregulated Bile Acid Synthesis Is Reversible by Butyrate Supplementation. The Journal of Pathology, 243, 431-441. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kang, D.J., Betrapally, N.S., Ghosh, S.A., Sartor, R.B., Hylemon, P.B., Gillevet, P.M., et al. (2016) Gut Microbiota Drive the Development of Neuroinflammatory Response in Cirrhosis in Mice. Hepatology, 64, 1232-1248. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bajaj, J.S., Fagan, A., White, M.B., Wade, J.B., Hylemon, P.B., Heuman, D.M., et al. (2019) Specific Gut and Salivary Microbiota Patterns Are Linked with Different Cognitive Testing Strategies in Minimal Hepatic Encephalopathy. The American Journal of Gastroenterology, 114, 1080-1090. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Riva, A., Patel, V., Kurioka, A., Jeffery, H.C., Wright, G., Tarff, S., et al. (2018) Mucosa-Associated Invariant T Cells Link Intestinal Immunity with Antibacterial Immune Defects in Alcoholic Liver Disease. Gut, 67, 918-930. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hackstein, C.-P., Assmus, L.M., Welz, M., Klein, S., Schwandt, T., Schultze, J., et al. (2017) Gut Microbial Translocation Corrupts Myeloid Cell Function to Control Bacterial Infection during Liver Cirrhosis. Gut, 66, 507-518. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Bajaj, J.S., Matin, P., White, M.B., Fagan, A., Deeb, J.G., Acharya, C., et al. (2018) Periodontal Therapy Favorably Modulates the Oral-Gut-Hepatic Axis in Cirrhosis. American Journal of Physiology Gastrointestinal and Liver Physiology, 315, G824-G837. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Bajaj, J.S., Idilman, R., Mabudian, L., Hood, M., Fagan, A., Turan, D., et al. (2018) Diet Affects Gut Microbiota and Modulates Hospitalization Risk Differentially in an International Cirrhosis Cohort. Hepatology, 68, 234-247. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Hussain, S.K., Dong, T.S., Agopian, V., Pisegna, J.R., Durazo, F.A., Enayati, P., et al. (2020) Dietary Protein, Fiber and Coffee Are Associated with Small Intestine Microbiome Composition and Diversity in Patients with Liver Cirrhosis. Nutrients, 12, Article No. 1395. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Li, M.-M., Zhou, Y., Zuo, L., Nie, D. and Li, X.-A. (2021) Dietary Fiber Regulates Intestinal Flora and Suppresses Liver and Systemic Inflammation to Alleviate Liver Fibrosis in Mice. Nutrition, 81, Article ID: 110959. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Caraceni, P., Vargas, V., Solà, E., Alessandria, C., De Wit, K., Trebicka, J., et al. (2021) The Use of Rifaximin in Patients with Cirrhosis. Hepatology, 74, 1660-1673. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kawaguchi, T., Suzuki, F., Imamura, M., Murashima, N., Yanase, M., Mine, T., et al. (2019) Rifaximin-Altered Gut Microbiota Components Associated with Liver/Neuropsychological Functions in Patients with Hepatic Encephalopathy: An Exploratory Data Analysis of Phase II/III Clinical Trials. Hepatology Research, 49, 404-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Moreau, R., Elkrief, L., Bureau, C., Perarnau, J.-M., Thévenot, T., Saliba, F., et al. (2018) Effects of Long-Term Norfloxacin Therapy in Patients with Advanced Cirrhosis. Gastroenterology, 155, 1816-1827.e9. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Gómez-Hurtado, I., Gimenez, P., García, I., Zapater, P., Francés, R., González-Navajas, J.M., et al. (2018) Norfloxacin Is More Effective Than Rifaximin in Avoiding Bacterial Translocation in an Animal Model of Cirrhosis. Liver International, 38, 295-302. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Piano, S., Brocca, A., Mareso, S. and Angeli, P. (2018) Infections Complicating Cirrhosis. Liver International: Official Journal of the International Association for the Study of the Liver, 38, 126-133. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kortright, K.E., Chan, B.K., Koff, J.L. and Turner, P.E. (2019) Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host & Microbe, 25, 219-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Liu, Y., Chen, K., Li, F., Gu, Z., Liu, Q., He, L., et al. (2020) Probiotic Lactobacillus Rhamnosus GG Prevents Liver Fibrosis through Inhibiting Hepatic Bile Acid Synthesis and Enhancing Bile Acid Excretion in Mice. Hepatology, 71, 2050-2066. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Kurtz, C.B., Millet, Y.A., Puurunen, M.K., Perreault, M., Charbonneau, M.R., Isabella, V.M., et al. (2019) An Engineered E. coli Nissle Improves Hyperammonemia and Survival in Mice and Shows Dose-Dependent Exposure in Healthy Humans. Science Translational Medicine, 11, Article No. eaau7975. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Santos, A.A., Afonso, M.B., Ramiro, R.S., Pires, D., Pimentel, M., Castro, R.E., et al. (2020) Host MiRNA-21 Promotes Liver Dysfunction by Targeting Small Intestinal Lactobacillus in Mice. Gut Microbes, 12, Article ID: 1840766. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Hansen, C.H.F., Larsen, C.S., Petersson, H.O., Zachariassen, L.F., Vegge, A., Lauridsen, C., et al. (2019) Targeting Gut Microbiota and Barrier Function with Prebiotics to Alleviate Autoimmune Manifestations in NOD Mice. Diabetologia, 62, 1689-1700. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Horvath, A., Durdevic, M., Leber, B., Di Vora, K., Rainer, F., Krones, E., et al. (2020) Changes in the Intestinal Microbiome during a Multispecies Probiotic Intervention in Compensated Cirrhosis. Nutrients, 12, Article No. 1874. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Suez, J., Zmora, N., Zilberman-Schapira, G., Mor, U., Dori-Bachash, M., Bashiardes, S., et al. (2018) Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT. Cell, 174, 1406-1423.e16. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Bajaj, J.S., Kakiyama, G., Savidge, T., Takei, H., Kassam, Z.A., Fagan, A., et al. (2018) Antibiotic-Associated Disruption of Microbiota Composition and Function in Cirrhosis Is Restored by Fecal Transplant. Hepatology, 68, 1549-1558. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Bajaj, J.S., Fagan, A., Gavis, E.A., Kassam, Z., Sikaroodi, M. and Gillevet, P.M. (2019) Long-Term Outcomes of Fecal Microbiota Transplantation in Patients with Cirrhosis. Gastroenterology, 156, 1921-1923.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Bajaj, J.S., Salzman, N.H., Acharya, C., Sterling, R.K., White, M.B., Gavis, E.A., et al. (2019) Fecal Microbial Transplant Capsules Are Safe in Hepatic Encephalopathy: A Phase 1, Randomized, Placebo-Controlled Trial. Hepatology, 70, 1690-1703. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Liu, R., Kang, J.D., Sartor, R.B., Sikaroodi, M., Fagan, A., Gavis, E.A., et al. (2020) Neuroinflammation in Murine Cirrhosis Is Dependent on the Gut Microbiome and Is Attenuated by Fecal Transplant. Hepatology, 71, 611-626. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
García-Lezana, T., Raurell, I., Bravo, M., Torres-Arauz, M., Salcedo, M.T., Santiago, A., et al. (2018) Restoration of a Healthy Intestinal Microbiota Normalizes Portal Hypertension in a Rat Model of Nonalcoholic Steatohepatitis. Hepatology, 67, 1485-1498. [Google Scholar] [CrossRef] [PubMed]
|