|
[1]
|
T. A. Damberger. Fuel cells for hospital. Journal of Power Sources, 1998, 71(1-2): 45-50.
|
|
[2]
|
A. U. Dufour. Fuel cells—A new contributor to stationary power. Journal of Power Sources, 1998, 71: 19-25.
|
|
[3]
|
韩敏芳, 彭苏萍著. 固体氧化物燃料电池材料及制备[M]. 北京: 科学出版社, 2004.
|
|
[4]
|
衣宝廉. 燃料电池现状与未来[J]. 电源技术, 1998, 22(5): 2-6.
|
|
[5]
|
D. V. Shailesh. Overview of DOE SECA program. NETL, 26 July 2011.
|
|
[6]
|
李箭. 固体氧化物燃料电池的现状与发展[J]. 中国科学基金, 2004, 3: 145-149.
|
|
[7]
|
李箭. 固体氧化物燃料电池: 发展现状与关键技术[J]. 功能材料与器件学报, 2007, 13(6): 683-690.
|
|
[8]
|
S. C. Singhal. Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics, 2002, 152-153: 405- 410.
|
|
[9]
|
D. Hart, G. Hörmandinger. Environmental benefits of transport and stationary fuel cells. Journal of Power Sources, 1998, 71(1-2): 348-353.
|
|
[10]
|
韩敏芳, 蒋先锋译. 高温固体氧化物燃料电池——原理、设计和应用[M]. 北京: 科学出版社, 2007.
|
|
[11]
|
朱庆山, 彭练, 黄文来等. 固体氧化物燃料电池密封材料的研究现状与发展趋势[J]. 无机材料学报, 2006, 21(2): 285- 290.
|
|
[12]
|
毛宗强, 黄建兵, 王诚等. 低温固体氧化物燃料电池研究进展[J]. 电源技术, 2008, 32(2): 75-79.
|
|
[13]
|
S. C. Singhal. Advances in solid oxide fuel cell technology. Solid State Ionics, 2000, 135(1-4): 305-313.
|
|
[14]
|
马建军. 中温固体氧化物燃料电池的制备与表征[D]. 中国科学技术大学, 2007.
|
|
[15]
|
王志成. 基于纳米结构的中低温固体氧化物燃料电池电极的制备和性能研究[D]. 浙江大学, 2008.
|
|
[16]
|
闰瑞强. 中温固体氧化物燃料电池固体电解质的制备研究[D]. 中国科学技术大学, 2006.
|
|
[17]
|
黄秋安. 金属支撑固体氧化物燃料电池建模与诊断[D]. 华中科技大学, 2009.
|
|
[18]
|
E. D. Wachsman, K. T. Lee. Lowering the temperature of solid oxide fuel cells. Science, 2011, 334: 935-939.
|
|
[19]
|
B. Zhu, R. Raza, G. Abbas and A. Singh. Electrolyte-free fuel cell constructed from one homogenous layer with mixed con- ductivity. Advanced Functional Materials, 2011, 21: 2465-2469.
|
|
[20]
|
B. Zhu, R. Raza, H. Qin, Q. Liu and L. Fan. Fuel cells based on electrolyte and non-electrolyte separators. Energy & Environ- mental Science, 2011, 4: 2986-2992.
|
|
[21]
|
Nature Nanotechnology Research Highlights. Three in one. Nature Nanotechnology, 2011, 6: 330-330.
|
|
[22]
|
J. W. Veldsink, R. M. J. Van Damme, G. F. Versteeg and W. P. M. Van Swaajj. The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media. Che- mical Engineering Journal, 1995, 57: 115-125.
|
|
[23]
|
T. Suzuki, P. Jasinski, V. Petrovsky, H. U. Anderson and F. Dogan. Impact of anode microsturcture on solid oxid fuel cells. Journal of Electrochemical Society, 2005, 152: A527-A531.
|
|
[24]
|
D. Han, X. J. Liu, F. R. Zeng, J. Q. Qian, T. Z. Wu and Z. L. Zhan. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Surface Science Reports, 2012, 2(462): 1-5.
|
|
[25]
|
Q. A. Huang, R. Hui, B. W. Wang and J. J. Zhang. A review of AC impedance modeling and validation in SOFC diagnosis. Electrochimica Acta, 2007, 52(28): 8144-8164.
|
|
[26]
|
Q. A. Huang, S. M. Park. Unified model for transient faradaic impedance spectroscopy: theory and prediction. Journal of Physical Chemistry C, 2012, 116(32): 16939-16950.
|
|
[27]
|
E. D. Wachsman, K. T. Lee. Lowering the temperature of solid oxide fuel cells. Science, 2011, 334: 935-939.
|
|
[28]
|
Q. H. Liu, H. Y. Qin, R. Raza, L. D. Fan, Y. D. Li and B. Zhu. Advanced electrolyte-free fuel cells based on functional nano- composites of a single porous component: Analysis, modeling and validation. RSC Advances, 2012, 2: 8036-8040.
|
|
[29]
|
M. T. Janicke, H. Kestenbaum, U. Hagendorf, F. Schuth, M. Fichtner and K. Schubert. The controlled oxidation of hydrogen from an explosive mixture of gases using a microstructured reactor/ heat exchanger and Pt/Al2O3 catalyst. Journal of Catalysis, 2000, 191: 282-293.
|