|
[1]
|
Zhu, X.J., Zhou, P., Zhang, K.K., Yang, J., Luo, Y. and Lu, Y. (2013) Epigenetic Regulation of α A-Crystallin in High Myopia-Induced Dark Nuclear Cataract. PLoS ONE, 8, e81900. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Wong, Y. and Saw, S. (2016) Epidemiology of Pathologic Myopia in Asia and Worldwide. Asia-Pacific Journal of Ophthalmology, 5, 394-402. [Google Scholar] [CrossRef]
|
|
[3]
|
Pan, C., Cheung, C.Y., Aung, T., et al. (2013) Differential Associations of Myopia with Major Age-Related Eye Diseases. Ophthalmology, 120, 284-291. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Morteza, M. and Hossein, A. (2008) Prevalence of Cataract Type in Relation to Axial Length in Subjects with High Myopia and Emmetropia in an Indian Population. American Journal of Ophthalmology, 146, 176-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Pan, C., Boey, P.Y., Cheng, C., et al. (2013) Myopia, Axial Length, and Age-Related Cataract: The Singapore Malay Eye Study. Investigative Ophthalmology & Visual Science, 54, 4498-4502. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhu, X., Li, D., Du, Y., et al. (2018) DNA Hypermethylation-Mediated Downregulation of Antioxidant Genes Contributes to the Early Onset of Cataracts In Highly Myopic Eyes. Redox Biology, 19, 179-189. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Chang, L., Pan, C., Ohno-Matsui, K., et al. (2013) Myopia-Related Fundus Changes in Singapore Adults with High Myopia. American Journal of Ophthalmology, 155, 991-999. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Todorich, B., Scott, I.U., Flynn, J.H.W., et al. (2013) Macular Retinoschisis Associated with Pathologic Myopia. Retina (Philadelphia, Pa.), 33, 678-683. [Google Scholar] [CrossRef]
|
|
[9]
|
Li, T., Wang, X., Zhou, Y., et al. (2018) Paravascular Abnormalities Observed by Spectral Domain Optical Coherence Tomography Are Risk Factors for Retinoschisis in Eyes with High Myopia. Acta Ophthalmologica, 96, e515-e523. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Dolar-Szczasny, J., Święch-Zubilewicz, A. and Mackiewicz, J. (2019) A Review of Current Myopic Foveoschisis Management Strategies. Seminars in Ophthalmology, 34, 146-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Fan, X. and Monnier, V.M. (2021) Protein Posttranslational Modification (PTM) by Glycation: Role in Lens Aging and Age-Related Cataractogenesis. Experimental Eye Research, 210, Article ID: 108705. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Micelli-Ferrari, T., Vendemiale, G., Grattagliano, I., et al. (1996) Role of Lipid Peroxidation in the Pathogenesis of Myopic and Senile Cataract. British Journal of Ophthalmology, 80, 840-843. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Simonelli, F., Nesti, A., Pensa, M., Romano, L., Savastano, S., Rinaldi, E. and Auricchio, G. (1989) Lipid Peroxidation and Human Cataractogenesis in Diabetes and Severe Myopia. Experimental Eye Research, 49, 181-187. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chang, M.A., Congdon, N.G., Bykhovskaya, I., et al. (2005) The Association between Myopia and Various Subtypes of Lens Opacity. Ophthalmology, 112, 1395-1401. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Palmquist, B.M., Philipson, B. and Barr, P.O. (1984) Nuclear Cataract and Myopia during Hyperbaric Oxygen Therapy. British Journal of Ophthalmology, 68, 113-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Beebe, D.C., Holekamp, N.M., Siegfried, C., et al. (2011) Vitreoretinal Influences on Lens Function and Cataract. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 1293-1300. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Thompson, J.T. (2004) The Role of Patient Age and Intraocular Gas Use in Cataract Progression after Vitrectomy for Macular Holes and Epiretinal Membranes. American Journal of Ophthalmology, 137, 250-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Holekamp, N.M., Shui, Y. and Beebe, D.C. (2005) Vitrectomy Surgery Increases Oxygen Exposure to the Lens: A Possible Mechanism for Nuclear Cataract Formation. American Journal of Ophthalmology, 139, 302-310. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Francisco, B., Salvador, M. and Amparo, N. (2015) Oxidative Stress in Myopia. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 750637. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ke, C., Xu, H., Chen, Q., et al. (2021) Serum Metabolic Signatures of High Myopia among Older Chinese Adults. Eye, 35, 817-824. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhu, X., Gaus, K., Lu, Y., et al. (2010) Alpha- and Beta-Crystallins Modulate the Head Group Order of Human Lens Membranes during Aging. Investigative Ophthalmology & Visual Science, 51, 5162-5167. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Timsina, R., Khadka, N.K., Maldonado, D., et al. (2021) Interaction of Alpha-Crystallin with Four Major Phospholipids of Eye Lens Membranes. Experimental Eye Research, 202, Article ID: 108337. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhou, P., Luo, Y., Liu, X., et al. (2012) Down-Regulation and CpG Island Hypermethylation of CRYAA in Age-Related Nuclear Cataract. The FASEB Journal, 26, 4897-4902. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ji, Y., Rong, X., Ye, H., et al. (2015) Proteomic Analysis of Aqueous Humor Proteins Associated with Cataract Development. Clinical Biochemistry, 48, 1304-1309. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hejtmancik, J.F., Wingfield, P. and Sergeev, Y.V. (2004) β-Crystallin Association. Experimental Eye Research, 79, 377-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Heon, E., Priston, M., Schorderet, D.F., et al. (1999) The Gamma-Crystallins and Human Cataracts: A Puzzle Made Clearer. The American Journal of Human Genetics, 65, 1261-1267. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Xing, K.Y. and Lou, M.F. (2010) Effect of Age on the Thioltransferase (Glutaredoxin) and Thioredoxin Systems in the Human Lens. Investigative Ophthalmology & Visual Science, 51, 6598-6604. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Elanchezhian, R., Palsamy, P., Madson, C.J., et al. (2012) Age-Related Cataracts: Homocysteine Coupled Endoplasmic Reticulum Stress and Suppression of Nrf2-Dependent Antioxidant Protection. Chemico-Biological Interactions, 200, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Qi, R., Gu, Z. and Zhou, L. (2015) The Effect of GSTT1, GSTM1 and GSTP1 Gene Polymorphisms on the Susceptibility of Age-Related Cataract in Chinese Han Population. International Journal of Clinical and Experimental Medicine, 8, 19448-19453.
|
|
[30]
|
Wang, F., Ma, J., Han, F., et al. (2016) DL-3-n-butylphthalide Delays the Onset and Progression of Diabetic Cataract by Inhibiting Oxidative Stress in Rat Diabetic Model. Scientific Reports, 6, Article No. 19396. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chen, J., Zhou, J., Wu, J., et al. (2017) Aberrant Epigenetic Alterations of Glutathione-S-Transferase P1 in Age-Related Nuclear Cataract. Current Eye Research, 42, 402-410. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Tian, F., Dong, L., Zhou, Y., et al. (2014) Rapamycin-Induced Apoptosis in HGF-Stimulated Lens Epithelial Cells by AKT/mTOR, ERK and JAK2/STAT3 Pathways. International Journal of Molecular Sciences, 15, 13833-13848. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Tian, F., Zhao, J., Bu, S., et al. (2020) KLF6 Induces Apoptosis in Human Lens Epithelial Cells through the ATF4-ATF3-CHOP Axis. Drug Design, Development and Therapy, 14, 1041-1055. [Google Scholar] [CrossRef]
|
|
[34]
|
Mordechai, S., Gradstein, L., Pasanen, A., et al. (2011) High Myopia Caused by a Mutation in LEPREL1, Encoding Prolyl3-Hydroxylase2. The American Journal of Human Genetics, 89, 438-445. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Guo, H., Tong, P., Peng, Y., et al. (2014) Homozygous Loss-of-Function Mutation of the LEPREL1 Gene Causes Severe Non-Syndromic High Myopia with Early-Onset Cataract. Clinical Genetics, 86, 575-579. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Saika, S., Kawashima, Y., Miyamoto, T., et al. (1998) Immunolocalization of Prolyl 4-Hydroxylase Subunits, Alpha-Smooth Muscle Actin, and Extracellular Matrix Components in Human Lens Capsules with Lens Implants. Experimental Eye Research, 66, 283-294. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Vranka, J., Stadler, H.S. and Bächinger, H.P. (2009) Expression of Prolyl 3-Hydroxylase Genes in Embryonic and Adult Mouse Tissues. Cell Structure and Function, 34, 97-104. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Tian, F., Zhao, J., Bu, S., et al. (2020) KLF6 Induces Apoptosis in Human Lens Epithelial Cells through the ATF4-ATF3-CHOP Axis. Drug Design, Development and Therapy, 14, 1041-1055. [Google Scholar] [CrossRef]
|
|
[39]
|
Szegezdi, E., Logue, S.E., Gorman, A.M., et al. (2006) Mediators of Endoplasmic Reticulum Stress-Induced Apoptosis. EMBO Reports, 7, 880-885. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Oakes, S.A. and Papa, F.R. (2015) The Role of Endoplasmic Reticulum Stress in Human Pathology. Annual Review of Pathology, 10, 173-194. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Yang, J., Zhou, S., Gu, J., et al. (2015) UPR Activation and the Down-Regulation of α-Crystallin in Human High Myopia-Related Cataract Lens Epithelium. PLoS ONE, 10, e137582. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Lam, D.S., Lee, W.S., Leung, Y.F., et al. (2003) TGFbeta-Induced Factor: A Candidate Gene for High Myopia. Investigative Ophthalmology & Visual Science, 44, 1012-1015. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Ogata, N., Imaizumi, M., Miyashiro, M., et al. (2005) Low Levels of Pigment Epithelium-Derived Factor in Highly Myopic eyes with Chorioretinal Atrophy. American Journal of Ophthalmology, 140, 937-939. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Segev, F., Mor, O., Segev, A., et al. (2005) Downregulation of Gene Expression in the Ageing Lens: A Possible Contributory Factor in Senile Cataract. Eye (London), 19, 80-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Shin, Y.J., Nam, W.H., Park, S.E., et al. (2012) Aqueous Humor Concentrations of Vascular Endothelial Growth Factor and Pigment Epithelium-Derived Factor in High Myopic Patients. Molecular Vision, 18, 2265-2270.
|
|
[46]
|
Tolmachova, T., Wavre-Shapton, S.T., Barnard, A.R., et al. (2010) Retinal Pigment Epithelium Defects Accelerate Photoreceptor Degeneration in Cell Type-Specific Knockout Mouse Models of Choroideremia. Investigative Ophthalmology & Visual Science, 51, 4913-4920. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Yuan, J., Wu, S., Wang, Y., et al. (2019) Inflammatory Cytokines in Highly Myopic Eyes. Scientific Reports, 9, Article No. 3517. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Ho, T., Chen, S., Yang, Y., et al. (2009) Cytosolic Phospholipase A2-α Is an Early Apoptotic Activator in PEDF-Induced Endothelial Cell Apoptosis. American Journal of Physiology-Cell Physiology, 296, C273-C284. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
García-Gen, E., Penadés, M., Mérida, S., et al. (2021) High Myopia and the Complement System: Factor H in Myopic Maculopathy. Journal of Clinical Medicine, 10, 2600. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Weiler, J.M., Daha, M.R., Austen, K.F. and Fearon, D.T. (1976) Control of the Amplification Convertase of Complement by the Plasma Protein beta1H. Proceedings of the National Academy of Sciences of the United States of America, 73, 3268-3272. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Donoso, L.A., Kim, D., Frost, A., et al. (2006) The Role of Inflammation in the Pathogenesis of Age-Related Macular Degeneration. Survey of Ophthalmology, 51, 137-152. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Bok, D. (2005) Evidence for an Inflammatory Process in Age-Related Macular Degeneration Gains New Support. Proceedings of the National Academy of Sciences of the United States of America, 102, 7053-7054. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Mandal, M.N. and Ayyagari, R. (2006) Complement Factor H: Spatial and Temporal Expression and Localization in the Eye. Investigative Ophthalmology & Visual Science, 47, 4091-4097. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Wen, K., Shao, X., Li, Y., et al. (2021) The Plasminogen Protein Is Associated with High Myopia as Revealed by the iTRAQ-Based Proteomic Analysis of the Aqueous Humor. Scientific Reports, 11, Article No. 8789. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Godier, A. and Hunt, B.J. (2013) Plasminogen Receptors and Their Role in the Pathogenesis of Inflammatory, Autoimmune and Malignant Disease. Journal of Thrombosis and Haemostasis, 11, 26-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Herbort, C.P., Papadia, M. and Neri, P. (2011) Myopia and Inflammation. Journal of Ophthalmic and Vision Research, 6, 270-283.
|
|
[57]
|
Zhu, X., Zhang, K., He, W., et al. (2016) Proinflammatory Status in the Aqueous Humor of High Myopic Cataract Eyes. Experimental Eye Research, 142, 13-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Zhang, J.S., Da, W.J., Zhu, G.Y., et al. (2020) The Expression of Cytokines in Aqueous Humor of High Myopic Patients with Cataracts. Molecular Vision, 26, 150-157.
|
|
[59]
|
Liu, Y.X. and Sun, Y. (2018) MMP-2 Participates in the Sclera of Guinea Pig with Form-Deprivation Myopia via IGF-1/STAT3 Pathway. European Review for Medical and Pharmacological Sciences, 22, 2541-2548.
|
|
[60]
|
Zhuang, H., Zhang, R., Shu, Q., et al. (2014) Changes of TGF-β2, MMP-2, and TIMP-2 Levels in the Vitreous of Patients with High Myopia. Graefe’s Archive for Clinical and Experimental Ophthalmology, 252, 1763-1767. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Zhang, K., Zhu, X., Chen, M., et al. (2016) Elevated Transforming Growth Factor-β 2 in the Aqueous Humor: A Possible Explanation for High Rate of Capsular Contraction Syndrome in High Myopia. Journal of Ophthalmology, 2016, Article ID: 5438676. [Google Scholar] [CrossRef] [PubMed]
|