|
[1]
|
K. H. Schoenbach, T. Tessnow, F. E. Peterkin and W. W. Byszewski. Microhollow cathode discharges. Applied Physics Letters, 1996, 68(1): 3.
|
|
[2]
|
S. Xu, et al. Low-frequency, high-density, inductively coupled plasma sources: Operation and applications. Physics of Plasmas, 2001, 8(5): 2549-2557.
|
|
[3]
|
R. Amrani, et al. Optical and structural proprieties of nc-Si:H prepared by argon diluted silane PECVD. Journal of Non- Crystalline Solids, 2012, 358(17): 1978-1982
|
|
[4]
|
A. J. Flikweert, et al. Microcrystalline thin-film solar cell deposition on moving substrates using a linear VHF-PECVD reactor and a cross-flow geometry. Journal of Physics D: Applied Physics, 2012, 45(1): Article ID: 015101.
|
|
[5]
|
M. Tanjyo, S. Sakai and M. Takahashi. RF ion source for low energy ion implantation—Beam profile control of a large-area ion source using 500-MHz discharge. Surface and Coatings Technology, 2001, 136(1-3): 281-284.
|
|
[6]
|
H. Aguas, et al. Large area deposition of polymorphous silicon by plasma enhanced chemical vapor deposition at 27.12 MHz and 13.56 MHz. Japanese Journal of Applied Physics Part 1- Regular Papers Short Notes & Review Papers, 2003, 42(8): 4935- 4942.
|
|
[7]
|
A. Taylor, et al. Novel high frequency pulsed MW-linear antenna plasma-chemistry: Routes towards large area, low pressure nano- diamond growth. Diamond and Related Materials, 2011, 20(4): 613-615.
|
|
[8]
|
R. Rank, T. Wünsche and S. Günther. Magnetically enhanced RF discharges for effective pre-treatment of plastic webs at high speed. Surface and Coatings Technology, 2003, 174-175: 218- 221.
|
|
[9]
|
G. H. Gweon, et al. Investigation of the plasma uniformity in an internal linear antenna-type inductively coupled plasma source by applying dual frequency. Vacuum, 2010, 84(6): 823-827.
|
|
[10]
|
M. Mao, A. Bogaerts. Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma enhanced CVD system: The effect of different gas mixtures. Journal of Physics D: Applied Physics, 2010, 43(20): Article ID: 205201.
|
|
[11]
|
S. Shinohara, et al. Large-area high-density helicon plasma sources. Plasma Sources Science and Technology, 2010, 19(3): Article ID: 034018.
|
|
[12]
|
A. Anders. Plasma and ion sources in large area coating: A review. Surface and Coatings Technology, 2005, 200(5-6): 1893- 1906.
|
|
[13]
|
W. Miyazawa, et al. A large-area ECR processing plasma. Plasma Sources Science and Technology, 1996, 5(2): 265.
|
|
[14]
|
H. Schlemm, et al. Industrial large scale silicon nitride deposition on photovoltaic cells with linear microwave plasma sources. Surface and Coatings Technology, 2003, 174-175: 208-211.
|
|
[15]
|
J. Madocks, J. Rewhinkle and L. Barton. Packaging barrier films deposited on PET by PECVD using a new high density plasma source. Materials Science and Engineering: B, 2005, 119(3): 268- 273.
|
|
[16]
|
K. N. Kim, M. S. Kim and G. Y. Yeom. Effective plasma con- finement by applying multipolar magnetic fields in an internal linear inductively coupled plasma system. Applied Physics Letters, 2006, 88(16): Article ID: 161503.
|
|
[17]
|
U. Stephan, et al. Problems of power feeding in large area PECVD of amorphous silicon. MRS Proceedings, 1999, 557: 157-162.
|
|
[18]
|
J. Lim, et al. Study of internal linear inductively coupled plasma source for ultra large-scale flat panel display processing. Plasma Chemistry and Plasma Processing, 2009, 29(4): 251-259.
|
|
[19]
|
D. S. Hwang, et al. Dual comb-type electrodes as a plasma source for very high frequency plasma enhanced chemical vapor deposition. Thin Solid Films, 2010, 518(8): 2124-2127.
|
|
[20]
|
Y. Kimura, et al. A new method of line plasma production by microwave in a narrowed rectangular waveguide. Applied Physics Express, 2009, 2(12): 126002-126002-3.
|
|
[21]
|
S. Hubner, et al. Investigating a coaxial linear microwave discharges. Journal of Physics D—Applied Physics, 2011, 44(38): Article ID: 385202.
|
|
[22]
|
K. N. Kim, et al. Linear inductive antenna design for large area flat panel display plasma processing. Microelectronic Engineering, 2012, 89: 133-137.
|
|
[23]
|
B. B. Van Aken, et al. PECVD deposition of a-Si:H and mu c-Si:H using a linear RF source. San Diego: SPIE, 2007.
|
|
[24]
|
T. Zimmermann, et al. Inline deposition of microcrystalline silicon solar cells using a linear plasma source. Physica Status Solidi C—Current Topics in Solid State Physics, 2010, 7(3-4): 1097-1100.
|
|
[25]
|
H. Schlemm, M. Fritzsche and D. Roth. Linear radio frequency plasma sources for large scale industrial applications in photo- voltaics. Surface & Coatings Technology, 2005, 200(1-4): 958- 961.
|
|
[26]
|
C. Strobel, et al. Productivity potential of an inline deposition system for amorphous and microcrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2009, 93(9): 1598-1607.
|
|
[27]
|
J. Rudiger, et al. VHF plasma processing for in-line deposition systems. Thin Solid Films, 2003, 427(1-2): 16-20.
|
|
[28]
|
M. Kaiser, et al. Linearly extended plasma source for large- scale applications. Surface and Coatings Technology, 1999, 116- 119: 552-557.
|
|
[29]
|
K. N. Kim, et al. Low-impedance internal linear inductive antenna for large-area flat panel display plasma processing. Applied Physics Letters, 2005, 97(6): Article ID: 063302.
|
|
[30]
|
J. H. Lim, et al. Uniformity of internal linear-type inductively coupled plasma source for flat panel display processing. Applied Physics Letters, 2008, 92(5): Article ID: 051504.
|
|
[31]
|
K. N. Kim, et al. Scalable internal linear double comb-type inductively coupled plasma source for large area flat panel display processing. Surface and Coatings Technology, 2008, 202(22-23): 5242-5245.
|
|
[32]
|
K. N. Kim, S. J. Jung and G. Y. Yeom. Plasma and impedance characteristics of internal linear antennas for flat panel display applications. Thin Solid Films, 2005, 491(1-2): 82-85.
|
|
[33]
|
K. N. Kim, et al. Novel internal linear inductively coupled plasma source for flat panel display applications. Japanese Journal of Applied Physics, 2005, 44: 8133.
|
|
[34]
|
J. H. Lim, K. N. Kim and G. Y. Yeom. Inductively coupled plasma source using internal multiple U-type antenna for ultra large-area plasma processing. Plasma Processes and Polymers, 2007, 4(S1): S999-S1003.
|
|
[35]
|
S. J. Jung, K. N. Kim and G. Y. Yeom. Etching characteristics of multiple U-type internal linear inductively coupled plasma for flat panel display. Surface and Coatings Technology, 2005, 200 (1-4): 780-783.
|
|
[36]
|
K. N. Kim, et al. Characteristics of large area inductively coupled plasma using a multiple linear antennas with U-type parallel connection for flat panel display processing. Japanese Journal of Applied Physics, 2006, 45: 8869-8872.
|
|
[37]
|
K. N. Kim, S. J. Jung and G. Y. Yeom. Characteristics of inductively coupled plasma with multiple U-type internal antennas for flat panel display applications. Surface and Coatings Technology, 2005, 200(1-4): 784-787.
|
|
[38]
|
M. Liehr, M. Dieguez-Campo. Microwave PECVD for large area coating. Surface & Coatings Technology, 2005, 200(1-4): 21-25.
|
|
[39]
|
N. Neykova, et al. Novel plasma treatment in linear antenna microwave PECVD system. Vacuum, 2012, 86(6): 603-607.
|
|
[40]
|
M. Liehr, S. Wieder and M. Dieguez-Campo. Large area micro- wave coating technology. Thin Solid Films, 2006, 502(1-2): 9- 14.
|
|
[41]
|
E. Räuchle. Duo-plasmaline, a surface wave sustained linearly extended discharge. Journal de Physique Archives, 1998, 8(PR7): 99-108.
|
|
[42]
|
F. Fendrych, et al. Growth and characterization of nanodiamond layers prepared using the plasma-enhanced linear antennas micro- wave CVD system. Journal of Physics D: Applied Physics, 2010, 43(37): Article ID: 374018.
|
|
[43]
|
杨志威, 陈立民, 耿春雷, 唐伟忠, 吕反修, 苗晋琦, 赵中琴. 线形同轴耦合式微波等离子体CVD法制备金刚石薄膜[J]. 人工晶体学报, 2004, 33: 4.
|
|
[44]
|
唐伟忠, 蒋开云, 耿春雷, 黑立富. 线形微波等离子体CVD金刚石薄膜沉积技术[J]. 真空科学与技术学报, 2006, 26: 4.
|
|
[45]
|
K. N. Kim, et al. Effect of dual frequency on the plasma cha- racteristics in an internal linear inductively coupled plasma source. Applied Physics Letters, 2006, 89(25): Article ID: 251501.
|
|
[46]
|
V. Hopfe, et al. Linear extended ArcJet-CVD—A new PECVD approach for continuous wide area coating under atmospheric pressure. Chemical Vapor Deposition, 2005, 11(11-12): 510-522.
|
|
[47]
|
D. Linaschke, et al. In-line plasma-chemical etching of crystalline silicon solar wafers at atmospheric pressure. IEEE Transactions on Plasma Science, 2009, 37(6): 979-984.
|
|
[48]
|
I. Dani, et al. Atmospheric-pressure plasmas for solar cell manu- facturing. Contributions to Plasma Physics, 2009, 49(9): 662- 670.
|
|
[49]
|
G. Bräuer. Large area glass coating. Surface and Coatings Tech- nology, 1999, 112(1-3): 358-365.
|
|
[50]
|
L. Bardos, et al. Linear arc discharge source for large area plasma processing. Applied Physics Letters, 1997, 70(5): 577.
|
|
[51]
|
B. B. Van Aken, et al. Deposition of phosphorus doped a-Si:H and mu c-Si:H using a novel linear RF source. Journal of Non- Crystalline Solids, 2008, 354(19-25): 2392-2396.
|
|
[52]
|
Y. J. Lee, et al. Linear internal inductively coupled plasma (ICP) source with magnetic fields for large area processing. Thin Solid Films, 2003, 435(1-2): 275-279.
|
|
[53]
|
K. N. Kim, et al. Effects of multipolar magnetic fields on the characteristics of plasma and photoresist etching in an internal linear inductively coupled plasma system. Surface and Coatings Technology, 2004, 177-178: 752-757.
|
|
[54]
|
K. N. Kim, J. H. Lim and G. Y. Yeom. Plasma and antenna characteristics of a linearly extended inductively coupled plasma system using multi-polar magnetic field. Thin Solid Films, 2007. 515(12): 5193-5196.
|
|
[55]
|
K. N. Kim, et al. Plasma characteristics and antenna electrical characteristics of an internal linear inductively coupled plasma source with a multi-polar magnetic field. Plasma Chemistry and Plasma Processing, 2008, 28(1): 147-158.
|