| [1] | C. M. Ho, W. Y. Yu and C. M. Che. Ruthenium nanoparticles supported on hydroxyapatite as an efficient and recyclable cata- lyst for cis-dihydroxylation and oxidative cleavage of alkenes. Angew. Angewandte Chemie International Edition England, 2004, 43: 3303-3307. | 
                     
                                
                                    
                                        | [2] | S. Sebti, R. Tahir, R. Nazih,et al. Hydroxyapatite as a new solid support for the Knoevenagel reaction in heterogeneous media without solvent. Applied Catalysis, 2002, 228: 155-159. | 
                     
                                
                                    
                                        | [3] | E. M. Rivera, M. Araiza, W. Brostow, et al. Synthesis of hydro- xyapatite from eggshells. Materials Letters, 1999, 41(3): 128- 134. | 
                     
                                
                                    
                                        | [4] | Y. Xu, D. Wang, L. Yang, et al. Hydrothermal conversion of coral into hydroxyapatite. Materials Characterization, 2001, 47(2): 83-87. | 
                     
                                
                                    
                                        | [5] | L. E. L. Hammari, A. Laghzizil, P. Barboux, et al. Retention of flu- oride ions from aqueous solution using porous hydroxyapatite: Structure and conduction properties. Journal of Hazardous Ma- terials, 2004, 114(1-3): 41-44. | 
                     
                                
                                    
                                        | [6] | Y. Liu, H. Xu, Z. Huang, et al. Factors affecting the adsorption of Aqueous Cadmium (Ⅱ) on Hy droxyapaties. Acta Petrologica et Mineralogica, 2001, 20(4): 583-586. | 
                     
                                
                                    
                                        | [7] | M. Zahouily, Y. Abrouki, B. Bahlaouan, et al. Hydroxyapatite: New efficient catalyst for the Michael addition. Catalysis Com- munications, 2003, 4(10): 521-524. | 
                     
                                
                                    
                                        | [8] | H. Nishikawa. A high active type of hydroxyapatite for photo- catalytic decomposition of dimethyl sulfide under UV irradiation. Journal of Molecular Catalysis A: Chemical, 2004, 207(2): 149- 153. | 
                     
                                
                                    
                                        | [9] | S. Tanaka, N. Shiba and M. Senna. Change in the morphology of hydroxyapatite nanocrystals in the presence of bioaffinitive poly- meric species under the application of electrical field. Science and Technology of Advanced Materials, 2006, 7(2): 226-228. | 
                     
                                
                                    
                                        | [10] | P. Honarmandi. Fabrication of single-crystal nanospherical hydro- xyapatite powder for biomedical applications. Proceedings of ASME Global Congress, NEMB, 2010: 239-240. | 
                     
                                
                                    
                                        | [11] | P. Wang, C. Li, H. Gong, et al. Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technology, 2010, 203(2): 315-321. | 
                     
                                
                                    
                                        | [12] | X. Lu, Y. Leng. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials, 2005, 26(10): 1097-1108. | 
                     
                                
                                    
                                        | [13] | H. R. Ramay, M. Zhang. Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials, 2003, 24(19): 3293-3302. | 
                     
                                
                                    
                                        | [14] | A. J. V. Golumbfskie, S. A. Pande and K. Chakraborty. Simu- lation of biomimetic recognition between polymers and surfaces. Proceedings of the National Academy of Sciences, 1999, 96: 11707. | 
                     
                                
                                    
                                        | [15] | Z. Huang, L. Zhang, Y. Liu, et al. Controlled growth of the hy- droxyapatite (HAP) crystal morphology by template-mediated/ homogeneous-precipitation. Journal of Synthetic Crystals, 2006, 35(2): 261-264. | 
                     
                                
                                    
                                        | [16] | C. Chen, W. Yuan, J. Li, et al. Characterization of carbonated hydroxyapatite whiskers prepared by hydrothermal synthesis. CrystEngCommunity, 2011, 13: 1632-1637. | 
                     
                                
                                    
                                        | [17] | Q. He, Z. Huang. Controlled synthesis and morphological evolution of dendritic porous microspheres of calcium phosphates. Journal of Porous Materials, 2009, 16(6): 683-689. | 
                     
                                
                                    
                                        | [18] | X. Cheng, Q. He, J. Li, et al. Self-assembled growth and pore size control of the bubble-template porous carbonated hydro- xyapatite microsphere. Crystal Growth & Design, 2010, 10(3): 1180-1188. | 
                     
                                
                                    
                                        | [19] | R. Kern, I. Sunagawa. The equilibrium form of a crystal, morphology of crystals. Tokyo: Terra, 1987: 79. |