[1]
|
Roth, G.A., Mensah, G.A., Johnson, C.O., et al. (2020) Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study [Published Correction Appears in J Am Coll Cardiol. 2021 Apr 20; 77(15): 1958-1959]. Journal of the American College of Cardiology, 76, 2982-3021.
|
[2]
|
Alissa, E.M. and Ferns, G.A. (2011) Heavy Metal Poisoning and Cardiovascular Disease. Journal of Toxicology, 2011, Article ID: 870125. https://doi.org/10.1155/2011/870125
|
[3]
|
Hansson, G.K. (2005) Inflammation, Atherosclerosis, and Coronary Artery Disease. The New England Journal of Medicine, 352, 1685-1695. https://doi.org/10.1056/NEJMra043430
|
[4]
|
Lyngbakken, M.N., Myhre, P.L., Røsjø, H., et al. (2019) Novel Biomarkers of Cardiovascular Disease: Applications in Clinical Practice. Critical Reviews in Clinical Laboratory Sciences, 56, 33-60.
https://doi.org/10.1080/10408363.2018.1525335
|
[5]
|
Cao, M., Luo, H., Li, D., et al. (2022) Research Advances on Circulating Long Noncoding RNAs as Biomarkers of Cardiovascular Diseases. International Journal of Cardiology, 353, 109-117.
https://doi.org/10.1016/j.ijcard.2022.01.070
|
[6]
|
Yayan, J. (2013) Emerging Families of Biomarkers for Coronary Artery Disease: Inflammatory Mediators. Vascular Health and Risk Management, 9, 435-456. https://doi.org/10.2147/VHRM.S45704
|
[7]
|
Emdin, M., Aimo, A., Vergaro, G., et al. (2018) sST2 Predicts Outcome in Chronic Heart Failure Beyond NT-proBNP and High-Sensitivity Troponin T. Journal of the American College of Cardiology, 72, 2309-2320.
https://doi.org/10.1016/j.jacc.2018.08.2165
|
[8]
|
中华医学会心血管病学分会心力衰竭学组, 中国医师协会心力衰竭专业委员会, 中华心血管病杂志编辑委员会. 中国心力衰竭诊断和治疗指南2018 [J]. 中华心血管病杂志, 2018, 46(10): 760-789.
|
[9]
|
Averill, M.M., Kerkhoff, C. and Bornfeldt, K.E. (2012) S100A8 and S100A9 in Cardiovascular Biology and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 223-229. https://doi.org/10.1161/ATVBAHA.111.236927
|
[10]
|
Schiopu, A. and Cotoi, O.S. (2013) S100A8 and S100A9: DAMPs at the Crossroads between Innate Immunity, Traditional Risk Factors, and Cardiovascular Disease. Mediators of Inflammation, 2013, Article ID: 828354.
https://doi.org/10.1155/2013/828354
|
[11]
|
Ionita, M.G., Vink, A., Dijke, I.E., et al. (2009) High Levels of Myeloid-Related Protein 14 in Human Atherosclerotic Plaques Correlate with the Characteristics of Rupture-Prone Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 1220-1227. https://doi.org/10.1161/ATVBAHA.109.190314
|
[12]
|
McCormick, M.M., Rahimi, F., Bobryshev, Y.V., et al. (2005) S100A8 and S100A9 in Human Arterial Wall. Implications for Atherogenesis. Journal of Biological Chemistry, 280, 41521-41529. https://doi.org/10.1074/jbc.M509442200
|
[13]
|
Sreejit, G., Abdel-Latif, A., Athmanathan, B., et al. (2020) Neutrophil-Derived S100A8/A9 Amplify Granulopoiesis after Myocardial Infarction. Circulation, 141, 1080-1094. https://doi.org/10.1161/CIRCULATIONAHA.119.043833
|
[14]
|
Boyd, J.H., Kan, B., Roberts, H., et al. (2008) S100A8 and S100A9 Mediate Endotoxin-Induced Cardiomyocyte Dysfunction via the Receptor for Advanced Glycation End Products. Circulation Research, 102, 1239-1246.
https://doi.org/10.1161/CIRCRESAHA.107.167544
|
[15]
|
Moore, B.W. (1965) A Soluble Protein Characteristic of the Nervous System. Biochemical and Biophysical Research Communications, 19, 739-744. https://doi.org/10.1016/0006-291X(65)90320-7
|
[16]
|
Gonzalez, L.L., Garrie, K. and Turner, M.D. (2020) Role of S100 Proteins in Health and Disease. Biochimica et Biophysica Acta: Molecular Cell Research, 1867, Article ID: 118677. https://doi.org/10.1016/j.bbamcr.2020.118677
|
[17]
|
Vogl, T., Ludwig, S., Goebeler, M., et al. (2004) MRP8 and MRP14 Control Microtubule Reorganization during Transendothelial Migration of Phagocytes. Blood, 104, 4260-4268. https://doi.org/10.1182/blood-2004-02-0446
|
[18]
|
Kerkhoff, C., Eue, I. and Sorg, C. (1999) The Regulatory Role of MRP8 (S100A8) and MRP14 (S100A9) in the Transendothelial Migration of Human Leukocytes. Pathobiology, 67, 230-232. https://doi.org/10.1159/000028098
|
[19]
|
Kerkhoff, C., Klempt, M., Kaever, V., et al. (1999) The Two Calcium-Binding Proteins, S100A8 and S100A9, Are Involved in the Metabolism of Arachidonic Acid in Human Neutrophils. Journal of Biological Chemistry, 274, 32672-32679. https://doi.org/10.1074/jbc.274.46.32672
|
[20]
|
Hobbs, J.A., May, R., Tanousis, K., et al. (2003) Myeloid Cell Function in MRP-14 (S100A9) Null Mice. Molecular and Cellular Biology, 23, 2564-2576. https://doi.org/10.1128/MCB.23.7.2564-2576.2003
|
[21]
|
Averill, M.M., Barnhart, S., Becker, L., et al. (2011) S100A9 Differentially Modifies Phenotypic States of Neutrophils, Macrophages, and Dendritic Cells: Implications for Atherosclerosis and Adipose Tissue Inflammation. Circulation, 123, 1216-1226. https://doi.org/10.1161/CIRCULATIONAHA.110.985523
|
[22]
|
Edgeworth, J., Gorman, M., Bennett, R., et al. (1991) Identification of p8,14 as a Highly Abundant Heterodimeric Calcium Binding Protein Complex of Myeloid Cells. Journal of Biological Chemistry, 266, 7706-7713.
https://doi.org/10.1016/S0021-9258(20)89506-4
|
[23]
|
Ehrchen, J.M., Sunderkötter, C., Foell, D., et al. (2009) The Endogenous Toll-Like Receptor 4 Agonist S100A8/S100A9 (Calprotectin) as Innate Amplifier of Infection, Autoimmunity, and Cancer. Journal of Leukocyte Biology, 86, 557-566.
https://doi.org/10.1189/jlb.1008647
|
[24]
|
Cotoi, O.S., Dunér, P., Ko, N., et al. (2014) Plasma S100A8/A9 Correlates with Blood Neutrophil Counts, Traditional Risk Factors, and Cardiovascular Disease in Middle-Aged Healthy Individuals. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 202-210. https://doi.org/10.1161/ATVBAHA.113.302432
|
[25]
|
Croce, K., Gao, H., Wang, Y., et al. (2009) Myeloid-Related Protein-8/14 Is Critical for the Biological Response to Vascular Injury. Circulation, 120, 427-436. https://doi.org/10.1161/CIRCULATIONAHA.108.814582
|
[26]
|
Volz, H.C., Laohachewin, D., Seidel, C., et al. (2012) S100A8/A9 Aggravates Post-Ischemic Heart Failure through Activation of RAGE-Dependent NF-κB Signaling. Basic Research in Cardiology, 107, 250.
https://doi.org/10.1007/s00395-012-0250-z
|
[27]
|
Yao, D. and Brownlee, M. (2010) Hyperglycemia-Induced Reactive Oxygen Species Increase Expression of the Receptor for Advanced Glycation End Products (RAGE) and RAGE Ligands. Diabetes, 59, 249-255.
https://doi.org/10.2337/db09-0801
|
[28]
|
Nagareddy, P.R., Murphy, A.J., Stirzaker, R.A., et al. (2013) Hyperglycemia Promotes Myelopoiesis and Impairs the Resolution of Atherosclerosis. Cell Metabolism, 17, 695-708. https://doi.org/10.1016/j.cmet.2013.04.001
|
[29]
|
Ortega, F.J., Sabater, M., Moreno-Navarrete, J.M., et al. (2012) Serum and Urinary Concentrations of Calprotectin as Markers of Insulin Resistance and Type 2 Diabetes. European Journal of Endocrinology, 167, 569-578.
https://doi.org/10.1530/EJE-12-0374
|
[30]
|
Smith, M.R., Kinmonth, A.L., Luben, R.N., et al. (2003) Smoking Status and Differential White Cell Count in Men and Women in the EPIC-Norfolk Population. Atherosclerosis, 169, 331-337.
https://doi.org/10.1016/S0021-9150(03)00200-4
|
[31]
|
Drechsler, M., Megens, R.T., van Zandvoort, M., et al. (2010) Hyperlipidemia-Triggered Neutrophilia Promotes Early Atherosclerosis. Circulation, 122, 1837-1845. https://doi.org/10.1161/CIRCULATIONAHA.110.961714
|
[32]
|
Soehnlein, O. (2012) Multiple Roles for Neutrophils in Atherosclerosis. Circulation Research, 110, 875-888.
https://doi.org/10.1161/CIRCRESAHA.111.257535
|
[33]
|
Michelsen, K.S., Wong, M.H., Shah, P.K., et al. (2004) Lack of Toll-Like Receptor 4 or Myeloid Differentiation Factor 88 Reduces Atherosclerosis and Alters Plaque Phenotype in Mice Deficient in Apolipoprotein E. Proceedings of the National Academy of Sciences of the United States of America, 101, 10679-10684.
https://doi.org/10.1073/pnas.0403249101
|
[34]
|
Harja, E., Bu, D.X., Hudson, B.I., et al. (2008) Vascular and Inflammatory Stresses Mediate Atherosclerosis via RAGE and Its Ligands in apoE-/-Mice. Journal of Clinical Investigation, 118, 183-194. https://doi.org/10.1172/JCI32703
|
[35]
|
Peng, W.H., Jian, W.X., Li, H.L., et al. (2011) Increased Serum Myeloid-Related Protein 8/14 Level Is Associated with Atherosclerosis in Type 2 Diabetic Patients. Cardiovascular Diabetology, 10, 41.
https://doi.org/10.1186/1475-2840-10-41
|
[36]
|
霍勇, 葛均波, 韩雅玲, 等. 急性冠状动脉综合征患者强化他汀治疗专家共识[J]. 中国介入心脏病学杂志, 2014, 22(1): 4-6.
|
[37]
|
Altwegg, L.A., Neidhart, M., Hersberger, M., et al. (2007) Myeloid-Related Protein 8/14 Complex Is Released by Monocytes and Granulocytes at the Site of Coronary Occlusion: A Novel, Early, and Sensitive Marker of Acute Coronary Syndromes. European Heart Journal, 28, 941-948. https://doi.org/10.1093/eurheartj/ehm078
|
[38]
|
Katashima, T., Naruko, T., Terasaki, F., et al. (2010) Enhanced Expression of the S100A8/A9 Complex in Acute Myocardial Infarction Patients. Circulation Journal, 74, 741-748. https://doi.org/10.1253/circj.CJ-09-0564
|
[39]
|
王冬梅, 田芸. 慢性收缩性心力衰竭的新概念、新指南[J]. 中国循证心血管医学杂志, 2012, 4(1): 1-2.
|
[40]
|
Satoh, M., Shimoda, Y., Maesawa, C., et al. (2006) Activated Toll-Like Receptor 4 in Monocytes Is Associated with Heart Failure after Acute Myocardial Infarction. International Journal of Cardiology, 109, 226-234.
https://doi.org/10.1016/j.ijcard.2005.06.023
|
[41]
|
Zhao, P., Wang, J., He, L., et al. (2009) Deficiency in TLR4 Signal Transduction Ameliorates Cardiac Injury and Cardiomyocyte Contractile Dysfunction during Ischemia. Journal of Cellular and Molecular Medicine, 13, 1513-1525.
https://doi.org/10.1111/j.1582-4934.2009.00798.x
|
[42]
|
Singer, M., Deutschman, C.S., Seymour, C.W., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. https://doi.org/10.1001/jama.2016.0287
|
[43]
|
Boyd, J.H., Mathur, S., Wang, Y., et al. (2006) Toll-Like Receptor Stimulation in Cardiomyoctes Decreases Contractility and Initiates an NF-kappaB Dependent Inflammatory Response. Cardiovascular Research, 72, 384-393.
https://doi.org/10.1016/j.cardiores.2006.09.011
|