学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
应用数学进展
Vol. 11 No. 4 (April 2022)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
倒数距离无符号拉普拉斯极值图
The Extremal Graph of the Reciprocal Distance Signless Laplacian Matrix
DOI:
10.12677/AAM.2022.114217
,
PDF
,
HTML
,
,
被引量
作者:
程美姣
:浙江师范大学数学与计算机科学学院,浙江 金华
关键词:
倒数距离无符号拉普拉斯矩阵
;
谱半径
;
连通度
;
Reciprocal Distance Signless Laplacian Matrix
;
Spectral Radius
;
Connectivity
摘要:
给定图 G 是简单无向连通图,RD(G) 表示图 G 的 Harary 矩阵,也称为图 G 的倒数距离矩阵。图 G 的倒数距离无符号拉普拉斯矩阵定义为 RQ(G) = RT (G) + RD(G),其中 RT (G) 表示图 G 的倒数距离传递度对角矩阵。第二部分刻画了具有固定点数和固定点连通度且有最大倒数距离无符号拉普拉斯谱半径的极值图。第三部分刻画了具有固定点数和固定边连通度且有最大倒数距离无符号拉普拉斯谱半径的极值图。
Abstract:
Graph G is a simple undirected connected graph, RD(G) represents the Harary matrix of graph G, which is also the reciprocal distance matrix of graph G. The reciprocal distance signless Laplacian matrix of graph G is defined as RQ(G) = RT (G) + RD(G), where RT (G) represents the reciprocal distance transitivity diagonal matrix of G. The second part describes the extremal graphs with maximal spectral radius of the RQ(G) among all connected graphs of fixed order and fixed vertex connectivity. The third part characterizes the extremal graphs with maximal spectral radius of the RQ(G) among all connected graphs of fixed order and fixed edge connectivity.
文章引用:
程美姣. 倒数距离无符号拉普拉斯极值图[J]. 应用数学进展, 2022, 11(4): 2009-2016.
https://doi.org/10.12677/AAM.2022.114217
参考文献
[1]
Plavsi´c, D., Nikoli´c, S., Trinajsti´c, N. and Mihali´c, Z. (1993) On the Harary Index for the Characterization of Chemical Graphs. Journal of Mathematical Chemistry, 12, 235-250.
https://doi.org/10.1007/BF01164638
[2]
Alhevaz, A., Baghipur, M. and Ramane, H.S. (2019) Computing the Reciprocal Distance Signless Laplacian Eigenvalues and Energy of Graphs. Matematiche LXXIV, I, 49-73.
https://doi.org/10.2478/ausi-2018-0011
[3]
Medina, L. and Trigo, M. (2021) Upper Bounds and Lower Bounds for the Spectral Radius of Reciprocal Distance, Reciprocal Distance Laplacian and Reciprocal Distance Signless Lapla- cian Matrices. Linear Algebra and Its Applications, 609, 386-412.
https://doi.org/10.1016/j.laa.2020.09.024
[4]
Su, L., Li, H., Shi, M. and Zhang, J. (2014) On the Spectral Radius of the Reciprocal Distance Matrix. Advances in Mathematics (China), 43, 551-558.
[5]
Huang, F., Li, X. and Wang, S. (2015) On Graphs with Maximum Harary Spectral Radius. Applied Mathematics and Computation, 266, 937-945.
https://doi.org/10.1016/j.amc.2015.05.146
[6]
So, W. (1994) Commutativity and Spectra of Hermitian Matrices. Linear Algebra and Its Applications, 212/213, 121-129.
https://doi.org/10.1016/0024-3795(94)90399-9
[7]
West, D.B. (2001) Introduction to Graph Theory. Second Edition, Prentice Hall, Upper Saddle River.
投稿
为你推荐
友情链接
科研出版社
开放图书馆