|
[1]
|
Green, M. and Chen, X. (2019) Recent Progress of Nanomaterials for Microwave Absorption. Journal of Materiomics, 5, 503-541. [Google Scholar] [CrossRef]
|
|
[2]
|
Qin, F. and Brosseaou, C. (2012) A Review and Analysis of Microwave Absorption in Polymer Composites Filled with Carbonaceous Particles. Journal of Applied Physics, 111, Article ID: 061301. [Google Scholar] [CrossRef]
|
|
[3]
|
Qiang, R., Du, Y.C., Zhao, H.T., et al. (2015) Metal Organic Framework-Derived Fe/C Nanocubes toward Efficient Microwave Absorption. Journal of Materials Chemistry, 3, 13426-13434. [Google Scholar] [CrossRef]
|
|
[4]
|
Liu, G., Wang, L.Y., Yang, Z.H. and Wu, R.B. (2017) Synthesis of Iron-Based Hexagonal Microflakes for Strong Microwave Attenuation. Journal of Alloys and Compounds, 718, 46-52. [Google Scholar] [CrossRef]
|
|
[5]
|
Zhang, X.F., Guan, P.F. and Dong, X.L. (2010) Multidielectric Polarizations in the Core/Shell Co/Graphite Nanoparticles. Applied Physics Letters, 96, Article ID: 223111. [Google Scholar] [CrossRef]
|
|
[6]
|
Fang, Y.Z., Zheng, J.J., Wu, F.M., et al. (2010) Mesostructural Origin of Stress-Induced Magnetic Anisotropy in Fe-Based Nanocrystalline Ribbons. Applied Physics Letters, 96, Article ID: 092508. [Google Scholar] [CrossRef]
|
|
[7]
|
Daniil, M., Osofsky, M.S., Gubser, D.U. and Willard, M.A. (2010) (Fe, Si, Al)-Based Nanocrystalline Soft Magnetic Alloys for Cryogenic Applications. Applied Physics Letters, 96, Article ID: 162504. [Google Scholar] [CrossRef]
|
|
[8]
|
Caballero-Flores, R., Franco, V., Conde, A., et al. (2010) Influence of Co and Ni Addition on the Magnetocaloric Effect in Fe88−2xCoxNixZr7B4Cu1 Soft Magnetic Amorphous Alloys. Applied Physics Letters, 96, Article ID: 182506. [Google Scholar] [CrossRef]
|
|
[9]
|
Han, M.G., Liang, D.F. and Deng, L.J. (2010) Fabrication and Electromagnetic Wave Absorption Properties of Amorphous Fe79Si16B5 Microwires. Applied Physics Letters, 99, Article ID: 082503. [Google Scholar] [CrossRef]
|
|
[10]
|
Wang, Y.P., Li, H.H., Wang, Y.J., et al. (2014) Self-Assembled Fe-B Nanochains: Facile Synthesis, Magnetic and Electrochemical Properties. Materials Letters, 121, 40-43. [Google Scholar] [CrossRef]
|
|
[11]
|
Bai, Y.W., Bian, X.F., Qin, J.Y., et al. (2020) The Relationship between Structures and Magnetic Properties of Fe-B Amorphous Nanoparticles. Journal of Non-Crystalline Solids, 528, Article ID: 119723. [Google Scholar] [CrossRef]
|
|
[12]
|
Zhang, Y.H., Yao, C., Chao, Y.S. and Qin, G.W. (2013) Influence of Annealing Treatment on Microstructure and Soft Magnetic Properties of Fe-B-P Nanoparticles Prepared by Aqueous Chemical Reduction. Hyperfine Interact, 219, 101-105. [Google Scholar] [CrossRef]
|
|
[13]
|
Yao, C., Zhang, Y.H., Chen, J., et al. (2014) Size Controlled Preparation of Fe-B-P Submicrometre Particles and Magnetic Performance. Materials Research Innovations, 18, S4-634-S4-638. [Google Scholar] [CrossRef]
|
|
[14]
|
Zhang, Y.H., Wang, X.K., Yao, C. and Qin, G.W. (2016) Preparation and Characterization of Amorphous Fe-B-P Ultrafine Particles. Materials Science Forum, 848, 652-656. [Google Scholar] [CrossRef]
|
|
[15]
|
Shimada, Y., Endo, Y., Yamaguchi, M., et al. (2009) Production of Magnetically Soft Submicron Particles from Aqueous Solutions and Characterization. IEEE Transactions on Magnetics, 45, 4298-4301. [Google Scholar] [CrossRef]
|
|
[16]
|
Shimada, Y., Endo, Y., Yamaguchi, M., et al. (2011) Amorphous Submicron Particle Chains with High Permeability. IEEE Transactions on Magnetics, 47, 2831-2834. [Google Scholar] [CrossRef]
|
|
[17]
|
Yao, C., Shimada, Y., Muroga, S., et al. (2013) High Permeability and Electromagnetic Noise Suppression Characteristics of Fe-B-P Sub-Micron Particle Chains and Their Composites with NiZn-Ferrite Nanoparticles. Journal of Alloys and Compounds, 554, 414-418. [Google Scholar] [CrossRef]
|
|
[18]
|
Yang, X.Y., Yang, B., Li, X.P., et al. (2015) Structural-Controlled Chemical Synthesis of Nanosized Amorphous Fe Particles and Their Improved Performances. Journal of Alloys and Compounds, 651, 551-556. [Google Scholar] [CrossRef]
|
|
[19]
|
Ababei, G., Gaburici, M., Budeanu, L.-C., et al. (2018) Influence of the Chemically Synthesis Conditions on the Microstructure and Magnetic Properties of the Co-Fe-B Nanoparticles. Journal of Magnetism and Magnetic Materials, 451, 565-571. [Google Scholar] [CrossRef]
|
|
[20]
|
Wang, L., Quan, Q.C., Zhang, L.L., et al. (2018) Microwave Absorption of NdFe Magnetic Powders Tuned with Impedance Matching. Journal of Magnetism and Magnetic Materials, 449, 385-389. [Google Scholar] [CrossRef]
|
|
[21]
|
Zhou, Y.Y., Zhou, W.C., Li, R., et al. (2015) Enhanced Antioxidation and Electromagnetic Properties of Co-Coated Flaky Carbonyl iron Particles Prepared by Electroless Plating. Journal of Alloys and Compounds, 637, 10-15. [Google Scholar] [CrossRef]
|
|
[22]
|
Zhang, B.S., Feng, Y., Xiong, J., et al. (2006) Microwave-Absorbing Properties of De-Aggregated Flake-Shaped Carbonyl-Iron Particle Composites at 2-18 GHz. Ieee Transactions on Magnetics, 42, 1778-1781. [Google Scholar] [CrossRef]
|
|
[23]
|
Liu, Q.H., Xu, X.H., Xia, W.X., et al. (2015) Dependency of Magnetic Microwave Absorption on Surface Architecture of Co20Ni80 Hierarchical Structures Studied by Electron Holography. Nanoscale, 7, 1736-1743. [Google Scholar] [CrossRef]
|
|
[24]
|
Jiang, Q.R., Li, H.L., Cao, Z.M., et al. (2017) Synthesis and Enhanced Electromagnetic Wave Absorption Performance of Amorphous CoxFe10-x Alloys. Journal of Alloys and Compounds, 726, 1255-1261. [Google Scholar] [CrossRef]
|
|
[25]
|
Chuai, D., Liu, X.F., Yu, R.H., et al. (2016) Enhanced Microwave Absorption Properties of Flake-Shaped FePCB Metallic Glass/Graphene Composites. Composites: Part A, 89, 33-39. [Google Scholar] [CrossRef]
|