| [1] | M. A. Aziz-Alaoui. Study of a Leslie-Gower-type tritrophic population model. Chaos Solutions Fractals, 2002, 14(8): 1275-1293. | 
                     
                                
                                    
                                        | [2] | 陈滨, 王明新. 带有扩散和Beddington-DeAngelis响应函数的捕食模型的正平衡态[J]. 数学年刊, 2007, 28A(4): 495-506. | 
                     
                                
                                    
                                        | [3] | J. R. Beddington. Mutual interference between parasites or predators and its effect on searching efficiency. Journal of Animal Ecology, 1975, 44: 331-340. | 
                     
                                
                                    
                                        | [4] | D. L. DeAngelis, R. A. Goldstein and R. V. O’Neill. A model for tropic interaction. Ecology, 1975, 56(4): 881-892. | 
                     
                                
                                    
                                        | [5] | D. T. Dimitrov, H. V. Kojoubarov. Complete mathematical analysis of predator-prey models with linear prey growth and Beddington-DeAn- gelis functional response. Applied Mathematics and Computation, 2005, 162(2): 523-538. | 
                     
                                
                                    
                                        | [6] | P. H. Leslie. Some funther notes on the use of matrices in population mathematies. Biometrika, 1948, 35(1): 213-245. | 
                     
                                
                                    
                                        | [7] | M. A. Aziz-Alaoui, M. D. Okiye. Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Applied Mathematics Letters, 2003, 16(7): 1069-1075. | 
                     
                                
                                    
                                        | [8] | L. Nie, Z. Teng, L. Hu and J. Peng. Qualitative analysis of a modified Leslie-Gower and Holling-type II predator-prey model with state dependent impulsive effects. Nonlinear Analysis Real World Application, 2010, 11(3): 1364-1373. | 
                     
                                
                                    
                                        | [9] | 邹静. 两类离散Leslie型捕食与被捕食系统的稳定性与分岔分析[D]. 中南大学, 2011. | 
                     
                                
                                    
                                        | [10] | J. Blat, K. J. Brown. Global bifurcation of positive solutions in some systems of elliptic equations. SIAM Journal on Mathematical Analysis, 1986, 17(6): 1339-1353. | 
                     
                                
                                    
                                        | [11] | 叶其孝, 李正元. 反应扩散方程引论[M]. 北京: 科学出版社, 2011. | 
                     
                                
                                    
                                        | [12] | Y. Yamada. Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions. SIAM Journal on Mathematical Analysis, 1990, 21(2): 327-345. | 
                     
                                
                                    
                                        | [13] | J. Smoller. Shock waves and reaction-diffusion equations. New York: Springer-Veriag, 1994. | 
                     
                                
                                    
                                        | [14] | J. H. Wu. Global bifurcation of coexistence state for the competition model in the chemostat. Nonlinear Analysis, 2000, 39(7): 817-835. | 
                     
                                
                                    
                                        | [15] | T. Kato. Perturbation theory for linear operators. Berlin-New York: Springer-Verlag, 1980. | 
                     
                                
                                    
                                        | [16] | M. Ito. Global aspect of steady-states for competitive-diffusive systems with homogeneous Dirichlet conditions. Physics D, 1984, 14(1): 1-28. |