|
[1]
|
Uzoigwe, C.E., O’Leary, L., Nduka, J., et al. (2020) Factors Associated with Delirium and Cognitive Decline Following Hip Fracture Surgery. The Bone & Joint Journal, 102-B, 1675-1681. [Google Scholar] [CrossRef]
|
|
[2]
|
MacLullich, A.M. and Hall, R.J. (2011) Who Understands Delirium? Age and Ageing, 40, 412-414. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Naeije, G. and Pepersack, T. (2014) Delirium in Elderly People. The Lancet (London, England), 383, 2044-2045. [Google Scholar] [CrossRef]
|
|
[4]
|
Gleason, L.J., Schmitt, E.M., Kosar, C.M., et al. (2015) Ef-fect of Delirium and Other Major Complications on Outcomes after Elective Surgery in Older Adults. JAMA Surgery, 150, 1134-1140. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Jones, R.N., Cizginer, S., Pavlech, L., et al. (2019) Assessment of Instruments for Measurement of Delirium Severity: A Systematic Review. JAMA Internal Medicine, 179, 231-239. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Heintz-Buschart, A. and Wilmes, P. (2018) Human Gut Microbiome: Function Matters. Trends in Microbiology, 26, 563-574. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Morais, L.H., Schreiber, H.L. and Mazmanian, S.K. (2021) The Gut Microbiota-Brain Axis in Behaviour and Brain Disorders. Nature Reviews Microbiology, 19, 241-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zhan, G., Yang, N., Li, S., et al. (2018) Abnormal Gut Microbiota Composition Contributes to Cognitive Dysfunction in SAMP8 Mice. Aging, 10, 1257-1267. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Li, Q., Han, Y., Dy, A.B.C., et al. (2017) The Gut Microbiota and Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 11, Article No. 120. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Lv, F., Chen, S., Wang, L., et al. (2017) The Role of Microbiota in the Pathogenesis of Schizophrenia and Major Depressive Disorder and the Possibility of Targeting Microbiota as A Treatment Option. Oncotarget, 8, 100899-100907. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Yang, C., Qu, Y., Fujita, Y., et al. (2017) Possible Role of the Gut Microbiota-Brain Axis in the Antidepressant Effects of (R)-ketamine in a Social Defeat Stress Model. Translational Psychiatry, 7, 1294. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Jiang, X.L., Gu, X.Y., Zhou, X.X., et al. (2019) Intestinal Dysbacteriosis Mediates the Reference Memory Deficit Induced by Anaesthesia/Surgery in Aged Mice. Brain, Behavior, and Immunity, 80, 605-615. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhan, G., Hua, D., Huang, N., et al. (2019) Anesthesia and Surgery Induce Cognitive Dysfunction in Elderly Male Mice: The Role of Gut Microbiota. Aging, 11, 1778-1790. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Moller, J.T., Cluitmans, P., Rasmussen, L.S., et al. (1998) Long-Term Postoperative Cognitive Dysfunction in the Elderly ISPOCD1 Study. ISPOCD Investigators. International Study of Post-Operative Cognitive Dysfunction. The Lancet (London, England), 351, 857-861. [Google Scholar] [CrossRef]
|
|
[15]
|
Jeffery, I.B., Lynch, D.B. and O’Toole, P.W. (2016) Com-position and Temporal Stability of the Gut Microbiota in Older Persons. The ISME Journal, 10, 170-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Claesson, M.J., Jeffery, I.B., Conde, S., et al. (2012) Gut Microbiota Composition Correlates with Diet and Health in the Elderly. Nature, 488, 178-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lee, J., Venna, V.R., Durgan, D.J., et al. (2020) Young versus Aged Microbiota Transplants to Germ-Free Mice: Increased Short-Chain Fatty Acids and Improved Cognitive Performance. Gut Microbes, 12, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
D’Amato, A., Di Cesare Mannelli, L., Lucarini, E., et al. (2020) Faecal Microbiota Transplant from Aged Donor Mice Affects Spatial Learning and Memory via Modulating Hippocampal Synaptic Plasticity- and Neurotransmission-Related Proteins in Young Recipients. Microbiome, 8, 140. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Feinkohl, I., Winterer, G. and Pischon, T. (2017) Diabetes Is Associated with Risk of Postoperative Cognitive Dysfunction: A Meta-Analysis. Diabetes/Metabolism Research and Reviews, 33, e2884. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kadoi, Y., Saito, S., Fujita, N., et al. (2005) Risk Factors for Cognitive Dysfunction after Coronary Artery Bypass Graft Surgery in Patients with Type 2 Diabetes. The Journal of Thoracic and Cardiovascular Surgery, 129, 576-583. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Larsen, N., Vogensen, F.K., van den Berg, F.W., et al. (2010) Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS ONE, 5, e9085. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wu, X., Ma, C., Han, L., et al. (2010) Molecular Characterisa-tion of the Faecal Microbiota in Patients with Type II Diabetes. Current Microbiology, 61, 69-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Kim, Y.A., Keogh, J.B. and Clifton, P.M. (2018) Probiotics, Prebiotics, Synbiotics and Insulin Sensitivity. Nutrition Research Reviews, 31, 35-51. [Google Scholar] [CrossRef]
|
|
[24]
|
Zhao, L., Zhang, F., Ding, X., et al. (2018) Gut Bacteria Se-lectively Promoted by Dietary Fibers Alleviate Type 2 Diabetes. Science (New York, NY), 359, 1151-1156. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Moghadamrad, S., McCoy, K.D., Geuking, M.B., et al. (2015) At-tenuated Portal Hypertension in Germ-Free Mice: Function of Bacterial Flora on the Development of Mesenteric Lymphatic and Blood Vessels. Hepatology (Baltimore, Md), 61, 1685-1695. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yang, T., Santisteban, M.M., Rodriguez, V., et al. (2015) Gut Dysbiosis Is Linked to Hypertension. Hypertension (Dallas, Tex: 1979), 65, 1331-1340. [Google Scholar] [CrossRef]
|
|
[27]
|
Khalesi, S., Sun, J., Buys, N., et al. (2014) Effect of Probiotics on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials. Hyper-tension (Dallas, Tex: 1979), 64, 897-903. [Google Scholar] [CrossRef]
|
|
[28]
|
Gómez-Guzmán, M., Toral, M., Romero, M., et al. (2015) Antihypertensive Effects of Probiotics Lactobacillus Strains in Spontaneously Hypertensive Rats. Molecular Nutrition & Food Research, 59, 2326-2336. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhang, J., Bi, J.J., Guo, G.J., et al. (2019) Abnormal Composition of Gut Microbiota Contributes to Delirium-Like Behaviors after Abdominal Surgery in Mice. CNS Neuroscience & Therapeutics, 25, 685-696. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Skvarc, D.R., Berk, M., Byrne, L.K., et al. (2018) Post-Operative Cognitive Dysfunction: An Exploration of the Inflammatory Hypothesis and Novel Therapies. Neuroscience and Biobehavioral Reviews, 84, 116-133. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Barrientos, R.M., Hein, A.M., Frank, M.G., et al. (2012) Intracisternal Interleukin-1 Receptor Antagonist Prevents Postoperative Cognitive Decline and Neuroinflammatory Response in Aged Rats. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32, 14641-14648. [Google Scholar] [CrossRef]
|
|
[32]
|
Qiu, L.L., Ji, M.H., Zhang, H., et al. (2016) NADPH Oxidase 2-Derived Reactive Oxygen Species in the Hippocampus Might Contribute to Microglial Activation in Postoperative Cognitive Dysfunction in Aged Mice. Brain, Behavior, and Immunity, 51, 109-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Beloosesky, Y., Hendel, D., Weiss, A., et al. (2007) Cytokines and C-Reactive Protein Production in Hip-Fracture-Operated Elderly Patients. The Journals of Gerontology Series A, Bio-logical Sciences and Medical Sciences, 62, 420-426. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Buvanendran, A., Kroin, J.S., Berger, R.A., et al. (2006) Upregulation of Prostaglandin E2 and Interleukins in the Central Nervous System and Peripheral Tissue during and after Surgery in Humans. Anesthesiology, 104, 403-410. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Safavynia, S.A. and Goldstein, P.A. (2018) The Role of Neuroinflammation in Postoperative Cognitive Dysfunction: Moving from Hypothesis to Treatment. Frontiers in Psychiatry, 9, Article No. 752. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lukiw, W.J. (2016) Bacteroides Fragilis Lipopolysaccharide and Inflammatory Signaling in Alzheimer’s Disease. Frontiers in Microbiology, 7, Article No. 1544. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
de La Serre, C.B., de Lartigue, G. and Raybould, H.E. (2015) Chronic Exposure to Low Dose Bacterial Lipopolysaccharide Inhibits Leptin Signaling in Vagal Afferent Neurons. Physiology & Behavior, 139, 188-194. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Meng, F., Li, N., Li, D., et al. (2019) The Presence of Elevated Circulating Trimethylamine N-Oxide Exaggerates Postoperative Cognitive Dysfunction in Aged Rats. Behavioural Brain Research, 368, Article ID: 111902. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Obermeier, B., Daneman, R. and Ransohoff, R.M. (2013) Devel-opment, Maintenance and Disruption of the Blood-Brain Barrier. Nature Medicine, 19, 1584-1596. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhu, S., Jiang, Y., Xu, K., et al. (2020) The Progress of Gut Microbiome Research Related to Brain Disorders. Journal of Neuroinflammation, 17, 25. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Wu, S.C., Cao, Z.S., Chang, K.M., et al. (2017) Intestinal Mi-crobial Dysbiosis Aggravates the Progression of Alzheimer’s Disease in Drosophila. Nature Communications, 8, Article No. 24. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Braniste, V., Al-Asmakh, M., Kowal, C., et al. (2014) The Gut Microbiota Influences Blood-Brain Barrier Permeability in Mice. Science Translational Medicine, 6, 263ra158. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Zhang, J., Zhu, S., Jin, P., et al. (2020) Graphene Oxide Improves Postoperative Cognitive Dysfunction by Maximally Alleviating Amyloid Beta Burden in Mice. Theranostics, 10, 11908-11920. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Huang, C., Chu, J.M., Liu, Y., et al. (2018) Varenicline Reduces DNA Damage, Tau Mislocalization and Post Surgical Cognitive Impairment in Aged Mice. Neuropharmacology, 143, 217-227. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Li, Y., Yuan, Y., Li, Y., et al. (2021) α Inhibition of -Synuclein Accumulation Improves Neuronal Apoptosis and Delayed Postoperative Cognitive Recovery in Aged Mice. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 5572899. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Hill, J.M. and Lukiw, W.J. (2015) Microbial-Generated Amyloids and Alzheimer’s Disease (AD). Frontiers in Aging Neuroscience, 7, Article No. 9. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Mao, L., Zeng, Q., Su, W., et al. (2021) Elevation of miR-146a In-hibits BTG2/BAX Expression to Ameliorate Postoperative Cognitive Dysfunction Following Probiotics (VSL#3) Treatment. Molecular Neurobiology, 58, 3457-3470. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Wang, P., Yin, X., Chen, G., et al. (2021) Perioperative Probiotic Treatment Decreased the Incidence of Postoperative Cognitive Impairment in Elderly Patients Following Non-Cardiac Surgery: A Randomised Double-Blind and Placebo-Controlled Trial. Clinical Nutrition (Edinburgh, Scotland), 40, 64-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Han, D., Li, Z., Liu, T., et al. (2020) Prebiotics Regulation of Intestinal Microbiota Attenuates Cognitive Dysfunction Induced by Surgery Stimulation in APP/PS1 Mice. Aging and Disease, 11, 1029-1045. [Google Scholar] [CrossRef]
|