关于Ricci曲率有下界的完备黎曼流形上的函数估计
On the Function Estimate on Complete Riemannian Manifolds with Ricci Curvature Bounded from Below
DOI: 10.12677/PM.2012.24041, PDF, HTML,    国家自然科学基金支持
作者: 苏效乐*, 王雨生*:北京师范大学数学科学学院;孙宏伟*:首都师范大学数学科学学院
关键词: Ricci曲率函数估计Laplace比较定理Ricci Curvature; Function Estimate; Laplace Comparison
摘要: U. AbreschD. Gromoll给出了一个关于Ricci曲率有下界的完备黎曼流形上函数估计的重要定理[1],本文利用更为精细的论述证明了将这个定理中的一个关键条件变弱后,定理的结论依然成立。
Abstract: U. Abresch and D. Gromoll found a theorem on the function estimate on complete Riemannian manifolds with Ricci curvature bounded from below[1]. In this paper, it is proved that the conclusion of the theorem still holds when a crucial condition of the theorem is weakened.
文章引用:苏效乐, 孙宏伟, 王雨生. 关于Ricci曲率有下界的完备黎曼流形上的函数估计[J]. 理论数学, 2012, 2(4): 268-275. http://dx.doi.org/10.12677/PM.2012.24041

参考文献

[1] U. Abresch, D. Gromoll. On complete manifolds with nonnegative Ricci curvature. Journal of AMS, 1990, 3(2): 355-374.
[2] P. Peterson. Riemannian geometry, GTM 171. New York: Springer-Verlag, 1998.
[3] S. Zhu. The comparison geometry of Ricci curvature. Comparison Geometry (MSRI Publications), 1997, 30: 221-262.
[4] 伍鸿熙, 沈纯理, 虞言林. 黎曼几何初步[M]. 北京: 北京大学出版社, 1989.
[5] 丘成桐, 孙理察. 微分几何[M]. 北京: 科学出版社, 1988.