|
[1]
|
Potts, M.D. (2010) Drought in a Bornean Everwet Rain Forest. Journal of Ecology, 91, 467-474. [Google Scholar] [CrossRef]
|
|
[2]
|
Phillips, O.L., Heijden, G., Lewis, S.L., et al. (2010) Drought-Mortality Relationships for Tropical Forests. New Phytologist, 187, 631-646. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Anderegg, W.R.L., Berry, J.A., Smith, D.D., et al. (2012) The Roles of Hydraulic and Carbon Stress in a Widespread Climate-Induced Forest Die-Off. Proceedings of the National Academy of Sciences of the United States of America, 109, 233-237. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
周国逸, 李琳, 吴安驰. 气候变暖下干旱对森林生态系统的影响[J]. 南京信息工程大学学报(自然科学版), 2020, 12(1): 81-88.
|
|
[5]
|
Ciais, P., Reichstein, M., Viovy, N., et al. (2005) Europe-Wide Reduction in Primary Productivity Caused by the Heat and Drought in 2003. Nature, 437, 529-533. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Mueller, R.C., Scudder, C.M., Porter, M.E., et al. (2005) Differential Tree Mortality in Response to Severe Drought: Evidence for Long-Term Vegetation Shifts. Journal of Ecology, 93, 1085-1093. [Google Scholar] [CrossRef]
|
|
[7]
|
Anderegg, W., Schwalm, C., Biondi, F., et al. (2015) Pervasive Drought Legacies in Forest Ecosystems and Their Implications for Carbon Cycle Models. Science, 349, 528-532. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Choat, B., et al. (2012) Global Convergence in the Vulnerability of Forests to Drought. Nature, 491, 752-756.
|
|
[9]
|
Mcdowell, N., Pockman, W.T., Allen, C.D., et al. (2010) Mechanisms of Plant Survival and Mortality during Drought: Why Do Some Plants Survive While Others Succumb to Drought? New Phytologist, 178, 719-739. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Hartmann, H. and Trumbore, S. (2016) Understanding the Roles of Nonstructural Carbohydrates in Forest Trees—From What We Can Measure to What We Want to Know. The New Phytologist, 211, 386-403. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Sala, A., Woodruff, D.R. and Meinzer, F.C. (2012) Carbon Dynamics in Trees: Feast or Famine? Tree Physiology, 32, 764-775. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Dietze, M.C., Sala, A., Carbone, M.S., et al. (2014) Nonstructural Carbon in Woody Plants. Annual Review of Plant Biology, 65, 667-687. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Chapin, F. (1990) The Ecology and Economics of Storage in Plants. Annual Review of Ecology & Systematics, 21, 423-447. [Google Scholar] [CrossRef]
|
|
[14]
|
Peili, S., et al. (2006) End of Season Carbon Supply Status of Woody Species near the Treeline in Western China. Basic & Applied Ecology, 7, 370-377.
|
|
[15]
|
Shi, P., Hoch, G., et al. (2010) A Test of the Growth-Limitation Theory for Alpine Tree Line Formation in Evergreen and Deciduous Taxa of the Eastern Himalayas. Functional Ecology, 22, 213-220. [Google Scholar] [CrossRef]
|
|
[16]
|
金鹰, 王传宽, 周正虎. 木本植物木质部栓塞修复机制: 研究进展与问题[J]. 植物生态学报, 2016, 40(8): 834-846.
|
|
[17]
|
Canny, M.J. (2010) Transfusion Tissue of Pine Needles as a Site of Retrieval of Solutes from the Transpiration Stream. New Phytologist, 123, 227-232. [Google Scholar] [CrossRef]
|
|
[18]
|
郑云普, 王贺新, 娄鑫, 等. 木本植物非结构性碳水化合物变化及其影响因子研究进展[J]. 应用生态学报, 2014, 25(4): 1188-1196.
|
|
[19]
|
陈志成. 不同条件下树木死亡的水力失衡和碳饥饿机制[D]: [博士学位论文]. 北京: 中国林业科学研究院, 2016.
|
|
[20]
|
Yin, J., Guo, D., He, S., et al. (2009) Non-Structural Carbohydrate, N, and P Allocation Patterns of Two Temperate Tree Species in a Semi-Arid Region of Inner Mongolia. Acta Scientiarum Naturalium Universitatis Pekinensis, 45, 519-527.
|
|
[21]
|
Li, M.-H., Xiao, W.-F., et al. (2008) Nitrogen and Carbon Source-Sink Relationships in Trees at the Himalayan Treelines Compared with Lower Elevations. Plant, Cell & Environment, 31, 1377-1387. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Jouve, L., Le Thiec, D., Fayyaz, P., et al. (2007) Gradual Soil Water Depletion Results in Reversible Changes of Gene Expression, Protein Profiles, Ecophysiology, and Growth Performance in Populus euphratica, a Poplar Growing in Arid Regions. Plant Physiology, 143, 876-892. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Kozlowski, T.T. and Pallardy, S.G. (2002) Acclimation and Adaptive Responses of Woody Plants to Environmental Stresses. Botanical Review, 68, 270-334. [Google Scholar] [CrossRef]
|
|
[24]
|
Körner, C. (2003) Carbon Limitation in Trees. Wiley, Hoboken. [Google Scholar] [CrossRef]
|
|
[25]
|
Hervé, C. (1992) Vulnerability of Several Conifers to Air Embolism. Tree Physiology, 11, 73-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Mcdowell, N.G., Beerling, D.J., Breshears, D.D., et al. (2011) The Interdependence of Mechanisms Underlying Climate-Driven Vegetation Mortality. Trends in Ecology & Evolution, 26, 523-532. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Anderegg, W.R.L., et al. (2013) Consequences of Widespread Tree Mortality Triggered by Drought and Temperature Stress. Nature Climate Change, 3, 30-36. [Google Scholar] [CrossRef]
|
|
[28]
|
Hartmann, H., Ziegler, W., Kolle, O., et al. (2013) Thirst Beats Hunger-Declining Hydration during Drought Prevents Carbon Starvation in Norway Spruce Saplings. New Phytologist, 200, 340-349. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Mitchell, P.J., et al. (2013) Drought Response Strategies Define the Relative Contributions of Hydraulic Dysfunction and Carbohydrate Depletion during Tree Mortality. New Phytologist, 197, 862-872. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
段洪浪, 吴建平, 刘文飞, 等. 干旱胁迫下树木的碳水过程以及干旱死亡机理[J]. 林业科学, 2015, 51(11): 113-120.
|
|
[31]
|
Sperry, J.S., et al. (1988) A Method for Measuring Hydraulic Conductivity and Embolism in Xylem. Plant, Cell & Environment, 11, 35-40. [Google Scholar] [CrossRef]
|
|
[32]
|
Jansen, S., Choat, B. and Pletsers, A. (2009) Morphological Variation of Intervessel Pit Membranes and Implications to Xylem Function in Angiosperms. American Journal of Botany, 96, 409-419. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zwieniecki, M.A. and Holbrook, N.M. (1998) Diurnal Variation in Xylem Hydraulic Conductivity in White Ash (Fraxinus americana L.), Red Maple (Acer rubrum L.) and Red Spruce (Picea rubens Sarg.). Plant Cell and Environment, 21, 1173-1180. [Google Scholar] [CrossRef]
|
|
[34]
|
Salleo, S., Nardini, A., Pitt, F., et al. (2000) Xylem Cavitation and Hydraulic Control of Stomatal Conductance in Laurel (Laurus nobilis L.). Plant, Cell & Environment, 23, 71-79. [Google Scholar] [CrossRef]
|
|
[35]
|
Delzon, S., et al. (2010) Mechanism of Water-Stress Induced Cavitation in Conifers: Bordered Pit Structure and Function Support the Hypothesis of Seal Capillary-Seeding. Plant, Cell & Environment, 33, 2101-2111. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Meinzer, F.C., Johnson, D.M., Lachenbruch, B., et al. (2009) Xylem Hydraulic Safety Margins in Woody Plants: Coordination of Stomatal Control of Xylem Tension with Hydraulic Capacitance. Functional Ecology, 23, 922-930. [Google Scholar] [CrossRef]
|
|
[37]
|
Tyree, M.T. and Zimmermann, M.H. (2002) Xylem Structure and the Ascent of Sap. Springer, Berlin. [Google Scholar] [CrossRef]
|
|
[38]
|
Zwieniecki, M.A. and Holbrook, N.M. (2009) Confronting Maxwell’s Demon: Biophysics of Xylem Embolism Repair. Trends in Plant Science, 14, 530-534. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zwieniecki, H. (1999) Embolism Repair and Xylem Tension: Do We Need a Miracle? Plant Physiology, 120, 7-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Holbrook, Z.N.M. (2000) Bordered Pit Structure and Vessel Wall Surface Properties. Implications for Embolism Repair. Plant Physiology, 123, 1015-1020. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Timo, V., Teemu, H., Martti, P., et al. (2003) Refilling of a Hydraulically Isolated Embolized Xylem Vessel: Model Calculations. Annals of Botany, 91, 419-428. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Brodersen, C.R., Mcelrone, A.J., Choat, B., et al. (2013) In Vivo Visualizations of Drought-Induced Embolism Spread in Vitis vinifera. Plant Physiology, 161, 1820-1829. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Secchi, F., et al. (2020) Chemical Inhibition of Xylem Cellular Activity Impedes the Removal of Drought-Induced Embolisms in Poplar Stems—New Insights from Micro-CT Analysis. New Phytologist, 229, 820-830.
|
|
[44]
|
Tomasella, M., Petrussa, E., Petruzzellis, F., et al. (2020) The Possible Role of Non-Structural Carbohydrates in the Regulation of Tree Hydraulics. International Journal of Molecular Sciences, 21, 144. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Nardini, A., Gullo, M. and Salleo, S. (2011) Refilling Embolized Xylem Conduits: Is It a Matter of Phloem Unloading? Plant Science, 180, 604-611. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Patrizia, T. andrea, N., Lo, G., et al. (2015) Diurnal Changes in Embolism Rate in Nine Dry Forest Trees: Relationships with Species-Specific Xylem Vulnerability, Hydraulic Strategy and Wood Traits. Tree Physiology, 35, 694-705. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Silva, E.N., Ferreira-Silva, S.L., Viégas, R.A., et al. (2010) The Role of Organic and Inorganic Solutes in the Osmotic Adjustment of Drought-Stressed Jatropha curcas Plants. Environmental & Experimental Botany, 69, 279-285. [Google Scholar] [CrossRef]
|
|
[48]
|
Hartmann, H., Ziegler, W. and Trumbore, S. (2013) Lethal Drought Leads to Reduction in Nonstructural Carbohydrates in Norway Spruce Tree Roots But Not in the Canopy. Functional Ecology, 27, 413-427. [Google Scholar] [CrossRef]
|
|
[49]
|
Yoshimura, K., Saiki, S.T., Yazaki, K., et al. (2016) The Dynamics of Carbon Stored in Xylem Sapwood to Drought-Induced Hydraulic Stress in Mature Trees. Scientific Reports, 6, Article No. 24513. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Tomasella, M., Nardini, A., et al. (2017) Post-Drought Hydraulic Recovery Is Accompanied by Non-Structural Carbohydrate Depletion in the Stem Wood of Norway Spruce Saplings. Scientific Reports, 7, Article No. 14308. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Liu, J.X., et al. (2019) Corticular Photosynthesis Drives Bark Water Uptake to Refill Embolized Vessels in Dehydrated Branches of Salix matsudana. Plant, Cell & Environment, 42, 2584-2596. [Google Scholar] [CrossRef] [PubMed]
|