|
[1]
|
贺伟峰. 皮肤T细胞各亚群在创面再上皮化过程中的调控作用及相关机制[J]. 中华烧伤杂志, 2022, 38(2): 114-118.
|
|
[2]
|
Kumar, A., Singh, B., Tiwari, R., et al. (2022) Emerging Role of γδ T Cells in Protozoan Infection and Their Potential Clinical Application. Infection, Genetics and Evolution, 98, Article ID: 105210. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zheng, J., Liu, Y., Lau, Y.L., et al. (2013) γδ-T Cells: An Un-polished Sword in Human Anti-Infection Immunity. Cellular & Molecular Immunology, 10, 50-57. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Castro, T., Dennison, T., Ferdinand, J., et al. (2019) Anti-Commensal IgG Drives Intestinal Inflammation and Type 17 Immunity in Ulcerative Colitis. Immunity, 50, 1099-1114. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ramírez-Valle, F., Gray, E.E. and Cyster, J.G. (2015) Inflam-mation Induces Dermal Vγ4+ γδ T17 Memory-Like Cells That Travel to Distant Skin and Accelerate Secondary IL-17-Driven Responses. Proceedings of the National Academy of Sciences of the United States of America, 112, 8046-8051. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Nagai, K., Ishii, T., Ohno, T., et al. (2022) Overload of the Temporomandibular Joints Accumulates γδ T Cells in a Mouse Model of Rheumatoid Arthritis: A Morphological and Histological Evaluation. Frontiers in Immunology, 12, Article ID: 753754. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Malik, S., Want, M.Y. and Awasthi, A. (2016) The Emerging Roles of Gamma-Delta T Cells in Tissue Inflammation in Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 7, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Fichtner, A.S., Ravens, S. and Prinz, I. (2020) Human γδ TCR Repertoires in Health and Disease. Cells, 9, 800. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Paul, S. and Lal, G. (2016) Regulatory and Effector Functions of Gam-ma-Delta (γδ) T Cells and Their Therapeutic Potential in Adoptive Cellular Therapy for Cancer. International Journal of Cancer, 139, 976-985. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kreslavsky, T., Gleimer, M. and von Boehmer, H. (2010) αβ versus γδ Lin-eage Choice at the First TCR-Controlled Checkpoint. Current Opinion in Immunology, 22, 185-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Fahl, S.P., Coffey, F. and Wiest, D.L. (2014) Origins of γδ T Cell Effector Subsets: A Riddle Wrapped in an Enigma. The Journal of Immunology, 193, 4289-4294. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Taghon, T., Yui, M.A., Pant, R., et al. (2006) Developmental and Molecular Characterization of Emerging β- and γδ-Selected Pre-T Cells in the Adult Mouse Thymus. Immunity, 24, 53-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Muro, R., Takayanagi, H. and Nitta, T. (2019) T Cell Receptor Signaling for γδ T Cell Development. Inflammation and Regeneration, 39, 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Sumaria, N., Martin, S. and Pennington, D.J. (2019) Develop-mental Origins of Murine γδ T-Cell Subsets. Immunology, 156, 299-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Boll, G., Rudolphi, A., Spiess, S., et al. (1995) Regional Specialization of Intraepithelial T Cells in the Murine Small and Large Intestine. Scandinavian Journal of Immunology, 41, 103-113. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Duan, J., Chung, H., Troy, E., et al. (2010) Microbial Colonization Drives Expansion of IL-1 Receptor 1-Expressing and IL-17-Producing Gamma/Delta T Cells. Cell Host & Microbe, 7, 140-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Do, J.S., Kim, S., Keslar, K., et al. (2017) γδ T Cells Coexpress-ing Gut Homing α4β7 and αE Integrins Define a Novel Subset Promoting Intestinal Inflammation. The Journal of Im-munology, 198, 908-915. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
McKenzie, D.R., Comerford, I., Silva-Santos, B., et al. (2018) The Emerging Complexity of γδ T17 Cells. Frontiers in Immunology, 9, Article No. 796. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Papotto, P.H., Ribot, J.C. and Silva-Santos, B. (2017) IL-17+ γδ T Cells as Kick-Starters of Inflammation. Nature Immunology, 18, 604-611. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ribot, J.C., deBarros, A., Pang, D.J., et al. (2009) CD27 Is a Thymic Deter-minant of the Balance between Interferon-γ- and Interleukin 17-Producing γδ T Cell Subsets. Nature Immunology, 10, 427-436. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lo Presti, E., Mocciaro, F., Mitri, R.D., et al. (2020) Analysis of Co-lon-Infiltrating γδ T Cells in Chronic Inflammatory Bowel Disease and in Colitis-Associated Cancer. Journal of Leuko-cyte Biology, 108, 749-760. [Google Scholar] [CrossRef]
|
|
[22]
|
Lo Presti, E., Di Mitri, R., Mocciaro, F., et al. (2019) Charac-terization of γδ T Cells in Intestinal Mucosa from Patients with Early-Onset or Long-Standing Inflammatory Bowel Dis-ease and Their Correlation with Clinical Status. Journal of Crohn’s and Colitis, 13, 873-883. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Do, J.S., Visperas, A., Dong, C., et al. (2011) Cutting Edge: Genera-tion of Colitogenic Th17 CD4 T Cells Is Enhanced by IL-17+ γδ T Cells. The Journal of Immunology, 186, 4546-4550. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Dupraz, L., Magniez, A., Rolhion, N., et al. (2021) Gut Microbio-ta-Derived Short-Chain Fatty Acids Regulate IL-17 Production by Mouse and Human Intestinal γδ T Cells. Cell Reports, 36, Article ID: 109332. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Sun, X., Cai, Y., Fleming, C., et al. (2017) Innate γδ T17 Cells Play a Protective Role in DSS-Induced Colitis via Recruitment of Gr-1+CD11b+ Myeloid Suppressor Cells. Oncoim-munology, 6, e1313369. [Google Scholar] [CrossRef]
|
|
[26]
|
Lee, J.S., Tato, C.M., Joyce-Shaikh, B., et al. (2015) Inter-leukin-23-Independent IL-17 Production Regulates Intestinal Epithelial Permeability. Immunity, 43, 727-738. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Polese, B., Thurairajah, B., Zhang, H., et al. (2021) Prostaglan-din E2 Amplifies IL-17 Production by γδ T Cells during Barrier Inflammation. Cell Reports, 36, Article ID: 109456. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Olivares-Villagómez, D. and Van Kaer, L. (2018) Intestinal In-traepithelial Lymphocytes: Sentinels of the Mucosal Barrier. Trends in Immunology, 39, 264-275. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Komano, H., Fujiura, Y., Kawaguchi, M., et al. (1995) Homeostatic Regulation of Intestinal Epithelia by Intraepithelial Gamma Delta T Cells. Proceedings of the National Academy of Sci-ences of the United States of America, 92, 6147-6151. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Dalton, J.E., Cruickshank, S.M., Egan, C.E., et al. (2006) Intraepithelial γδ+ Lymphocytes Maintain the Integrity of Intestinal Epithelial Tight Junctions in Response to Infection. Gastroenterology, 131, 818-829. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Kober, O.I., Ahl, D., Pin, C., et al. (2014) γδ T-Cell-Deficient Mice Show Alterations in Mucin Expression, Glycosylation, and Goblet Cells but Maintain an Intact Mucus Layer. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 306, G582-G593. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Edelblum, K.L., Shen, L., Weber, C.R., et al. (2012) Dynamic Mi-gration of γδ Intraepithelial Lymphocytes Requires Occludin. Proceedings of the National Academy of Sciences of the United States of America, 109, 7097-7102. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Inagaki-Ohara, K., Chinen, T., Matsuzaki, G., et al. (2004) Mucosal T Cells Bearing TCRγδ Play a Protective Role in Intestinal Inflammation. The Journal of Immunology, 173, 1390-1398. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Chen, Y., Chou, K., Fuchs, E., et al. (2002) Protection of the In-testinal Mucosa by Intraepithelial Gamma Delta T Cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 14338-14343. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Ismail, A.S., Severson, K.M., Vaishnava, S., et al. (2011) γδ Intraep-ithelial Lymphocytes Are Essential Mediators of Host-Microbial Homeostasis at the intestinal Mucosal Surface. Pro-ceedings of the National Academy of Sciences of the United States of America, 108, 8743-8748. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Ismail, A.S., Behrendt, C.L. and Hooper, L.V. (2009) Reciprocal Interactions between Commensal Bacteria and Gamma Delta Intraepithelial Lymphocytes during Mucosal Injury. The Journal of Immunology, 182, 3047-3054. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Visperas, A., Shen, B. and Min, B. (2014) γδ T Cells Restrain Ex-trathymic Development of Foxp3+ Inducible Regulatory T Cells via IFN-γ. European Journal of Immunology, 44, 2448-2456. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Gu, Y., Hu, Y., Hu, K., et al. (2014) Rapamycin Together with TGF-β1, IL-2 and IL-15 Induces the Generation of Functional Regulatory γδ T Cells From Human Peripheral Blood Mononuclear Cells. Journal of Immunological Methods, 402, 82-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Casetti, R., Agrati, C., Wallace, M., et al. (2009) Cutting Edge: TGF-β1 and IL-15 Induce FOXP3+ γδ Regulatory T Cells in the Presence of Antigen Stimulation. The Journal of Im-munology, 183, 3574-3577. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Khairallah, C., Bettke, J.A., Gorbatsevych, O., et al. (2022) A Blend of Broadly-Reactive and Pathogen-Selected Vγ4 Vδ1 T Cell Receptors Confer Broad Bacterial Reactivity of Resi-dent Memory γδ T Cells. Mucosal Immunology, 15, 176-187. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Romagnoli, P.A., Sheridan, B.S., Pham, Q.M., et al. (2016) IL-17A-Producing Resident Memory γδ T Cells Orchestrate the Innate Immune Response to Secondary Oral Listeria monocytogenes Infection. Proceedings of the National Academy of Sciences of the United States of America, 113, 8502-8507. [Google Scholar] [CrossRef] [PubMed]
|