| [1] | Ali, S.M.U., Nur, O., Willander, M., et al. (2010) A Fast and Sensitive Potentiometric Glucose Microsensor Based on Glucose Oxidase Coated ZnO Nanowires Grown on a Thin Silver Wire. Sensors & Actuators B: Chemical, 145, 869-874. https://doi.org/10.1016/j.snb.2009.12.072
 | 
                     
                                
                                    
                                        | [2] | 龙玲. 过渡金属基纳米电催化剂的设计及其电催化应用[D]: [硕士学位论文]. 合肥: 中国科学技术大学, 2021. | 
                     
                                
                                    
                                        | [3] | Zhou, F., Jing, W., Xu, Y., et al. (2019) Performance Enhancement of ZnO Nanorod-Based Enzymatic Glucose Sensor via Reduced Graphene Oxide Deposition and UV Irradiation. Sensors and Actuators B: Chemical, 284, 377-385. https://doi.org/10.1016/j.snb.2018.12.141
 | 
                     
                                
                                    
                                        | [4] | Zhou, Y., Uzun, S.D., Watkins, N.J., et al. (2019) Three-Dimensional CeO2woodpile Nanostructures to Enhance Performance of Enzymatic Glucose Biosensors. ACS Applied Materials & Interfaces, 11, 1821-1828. https://doi.org/10.1021/acsami.8b16985
 | 
                     
                                
                                    
                                        | [5] | Su, Y., Guo, H., Wang, Z., et al. (2018) Au@Cu2O Core-Shell Structure for High Sensitive Non-Enzymatic Glucose Sensor. Sensors and Actuators B: Chemical, 255, 2510-2519. https://doi.org/10.1016/j.snb.2017.09.056
 | 
                     
                                
                                    
                                        | [6] | Yang, Z. and Bai, X. (2021) Synthesis of Au Core Flower Surrounding with Sulphur-Doped Thin Co3O4 Shell for Enhanced Nonenzymatic Detection of Glucose. Microchemical Journal, 160, Article ID: 105601. https://doi.org/10.1016/j.microc.2020.105601
 | 
                     
                                
                                    
                                        | [7] | Tsai, T.W., Heckert, G., Neves, L.F., et al. (2009) Adsorption of Glucose Oxidase onto Single-Walled Carbon Nanotubes and Its Application in Layer-by-Layer Biosensors. Analytical Chemistry, 81, 7917-7925. https://doi.org/10.1021/ac900650r
 | 
                     
                                
                                    
                                        | [8] | Chen, C., Xie, Q., Yang, D., et al. (2013) Recent Advances in Electrochemical Glucose Biosensors: A Review. RSC Advances, 3, 4473-4491. https://doi.org/10.1039/c2ra22351a
 | 
                     
                                
                                    
                                        | [9] | Lin, K.C., Lin, Y.C. and Chen, S.M. (2013) A Highly Sensitive Nonenzymatic Glucose Sensor Based on Multi-Walled Carbon Nanotubes Decorated with Nickel and Copper Nanoparticles. Electrochimica Acta, 96, 164-172. https://doi.org/10.1016/j.electacta.2013.02.098
 | 
                     
                                
                                    
                                        | [10] | 许伟娜. 基于碳布上生长氧化物纳米结构的柔性无酶生物传感器研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2016. | 
                     
                                
                                    
                                        | [11] | 高艳莎. 基于导电聚合物和碳纳米材料构建的电化学免疫传感器的研究[D]: [硕士学位论文]. 南昌: 江西科技师范大学, 2016. | 
                     
                                
                                    
                                        | [12] | 张怡. 金属氧化物多级结构的构建及其无酶生物传感性能的研究[D]: [硕士学位论文]. 济南: 山东大学, 2020. | 
                     
                                
                                    
                                        | [13] | Dayakar, T., Venkateswara Rao, K., Vinodkumar, M., et al. (2018) Novel Synthesis and Characterization of Ag@TiO2 Core Shell Nanostructure for Non-Enzymatic Glucose Sensor. Applied Surface Science, 435, 216-224. https://doi.org/10.1016/j.apsusc.2017.11.077
 | 
                     
                                
                                    
                                        | [14] | Shim, K., Lee, W.C., Park, M.S., et al. (2019) Au Decorated Core-Shell Structured Au@Pt for the Glucose Oxidation Reaction. Sensors and Actuators B: Chemical, 278, 88-96. https://doi.org/10.1016/j.snb.2018.09.048
 | 
                     
                                
                                    
                                        | [15] | 王兰芳. 镍基/贵金属复合纳米阵列的制备及其电化学性质研究[D]: [博士学位论文]. 临汾: 山西师范大学, 2019. | 
                     
                                
                                    
                                        | [16] | Shu, H., Cao, L., Chang, G., et al. (2014) Direct Electrodeposition of Gold Nanostructures onto Glassy Carbon Electrodes for Non-Enzymatic Detection of Glucose. Electrochimica Acta, 132, 524-532. https://doi.org/10.1016/j.electacta.2014.04.031
 | 
                     
                                
                                    
                                        | [17] | Ryu, J., Kim, K., Kim, H.S., et al. (2010) Intense Pulsed Light Induced Platinum-Gold Alloy Formation on Carbon Nanotubes for Non-Enzymatic Glucose Detection. Biosensors and Bioelectronics, 26, 602-607. https://doi.org/10.1016/j.bios.2010.07.021
 | 
                     
                                
                                    
                                        | [18] | Yuan, M., Liu, A., Zhao, M., et al. (2014) Bimetallic PdCu Nanoparticle Decorated Three-Dimensional Graphene Hydrogel for Non-Enzymatic Amperometric Glucose Sensor. Sensors and Actuators B: Chemical, 190, 707-714. https://doi.org/10.1016/j.snb.2013.09.054
 | 
                     
                                
                                    
                                        | [19] | Chakraborty, P., Dhar, S., Debnath, K., et al. (2019) Non-Enzymatic and Non-Invasive Glucose Detection Using Au Nanoparticle Decorated CuO Nanorods. Sensors and Actuators B: Chemical, 283, 776-785. https://doi.org/10.1016/j.snb.2018.12.086
 | 
                     
                                
                                    
                                        | [20] | Wang, X., Xia, X., Zhang, X., et al. (2017) Nonenzymatic Glucose Sensor Based on Ag&Pt Hollow Nanoparticles Supported on TiO2 Nanotubes. Materials Science and Engineering: C, 80, 174-179. https://doi.org/10.1016/j.msec.2017.05.137
 | 
                     
                                
                                    
                                        | [21] | Şavk, A., Aydın, H., Cellat, K., et al. (2020) A Novel High Performance Non-Enzymatic Electrochemical Glucose Biosensor Based on Activated Carbon-Supported Pt-Ni Nanocomposite. Journal of Molecular Liquids, 300, Article ID: 112355. https://doi.org/10.1016/j.molliq.2019.112355
 | 
                     
                                
                                    
                                        | [22] | Ngo, Y.L.T., Hoa, L.T, Chung, J.S., et al. (2017) Multi-Dimensional Ag/NiO/Reduced Graphene Oxide Nanostructures for a Highly Sensitive Non-Enzymatic Glucose Sensor. Journal of Alloys and Compounds, 712, 742-751. https://doi.org/10.1016/j.jallcom.2017.04.131
 | 
                     
                                
                                    
                                        | [23] | Weremfo, A., Fong, S.T.C., Khan, A., Hibbert, D.B. and Zhaom C, (2017) Electrochemically Roughened Nanoporous Platinum Electrodes for Non-Enzymatic Glucose Sensors. Electrochimica Acta, 231, 20-26. https://doi.org/10.1016/j.electacta.2017.02.018
 | 
                     
                                
                                    
                                        | [24] | Wei, H., Xue, Q., Li, A., et al. (2021) Dendritic Core-Shell Copper-Nickel Alloy@metal Oxide for Efficient Non-Enzymatic Glucose Detection. Sensors and Actuators B: Chemical, 337, Article ID: 129687. https://doi.org/10.1016/j.snb.2021.129687
 | 
                     
                                
                                    
                                        | [25] | Sb, A., Wu, A. and Auhas, B. (2018) Polyaniline@CuNi Nanocomposite: A Highly Selective, Stable and Efficient Electrode Material for Binder Free Non-Enzymatic Glucose Sensor. Electrochimica Acta, 284, 382-391. https://doi.org/10.1016/j.electacta.2018.07.165
 | 
                     
                                
                                    
                                        | [26] | Da Rvishi, S., Souissi, M., Karimzadeh, F., et al. (2017) Ni Nanoparticle-Decorated Reduced Graphene Oxide for Non-Enzymatic Glucose Sensing: An Experimental and Modeling Study. Electrochimica Acta, 240, 388-398. https://doi.org/10.1016/j.electacta.2017.04.086
 | 
                     
                                
                                    
                                        | [27] | Niu, X., Lan, M., Zhao, H., et al. (2013) Highly Sensitive and Selective Nonenzymatic Detection of Glucose Using Three-Dimensional Porous Ni Nanostructures. Analytical Chemistry, 85, 3561-3569. https://doi.org/10.1021/ac3030976
 | 
                     
                                
                                    
                                        | [28] | Cui, Z., Yin, H., Nie, Q., et al. (2015) Hierarchical Flower-Like NiO Hollow Microspheres for Non-Enzymatic Glucose Sensors. Journal of Electroanalytical Chemistry, 757, 51-57. https://doi.org/10.1016/j.jelechem.2015.09.011
 | 
                     
                                
                                    
                                        | [29] | Zhe, T., Sun, X., Liu, Y., et al. (2019) An Integrated Anode Based on Porous Ni/Cu(OH)2 Nanospheres for Non-Enzymatic Glucose Sensing. Microchemical Journal, 151, Article ID: 104197. https://doi.org/10.1016/j.microc.2019.104197
 | 
                     
                                
                                    
                                        | [30] | Sun, S., Shi, N., Liao, X., et al. (2020) Facile Synthesis of CuO/Ni(OH)2 on Carbon Cloth for Non-Enzymatic Glucose Sensing. Applied Surface Science, 529, Article ID: 147067. https://doi.org/10.1016/j.apsusc.2020.147067
 | 
                     
                                
                                    
                                        | [31] | Pal, N., Banerjee, S. and Bhaumik, A. (2018) A Facile Route for the Syntheses of Ni(OH)2 and NiO Nanostructures as Potential Candidates for Non-Enzymatic Glucose Sensor. Journal of Colloid and Interface Science, 516, 121-127. https://doi.org/10.1016/j.jcis.2018.01.027
 | 
                     
                                
                                    
                                        | [32] | Xuan, X., Qian, M., Pan, L., et al. (2018) A Longitudinally Expanded Ni-Based Metal-Organic Framework with Enhanced Double Nickel Cation Catalysis Reaction Channels for Non-Enzymatic Sweat Glucose Biosensor. Journal of Materials Chemistry B, 6, 393-400. https://doi.org/10.1039/D0TB01657H
 | 
                     
                                
                                    
                                        | [33] | Tan, Z., Huang, Y., Wang, S., et al. (2019) Production of Ni7S6/NiO Hybrids as a Highly Sensitive Amperometric Sensor for Glucose. Ionics, 25, 3961-3969. https://doi.org/10.1007/s11581-019-02926-5
 | 
                     
                                
                                    
                                        | [34] | Zhang, H., Yu, Y., Shen, X., et al. (2020) A Cu2O/Cu/carbon Cloth as a Binder-Free Electrode for Non-Enzymatic Glucose Sensors with High Performance. New Journal of Chemistry, 44, 1993-2000. https://doi.org/10.1039/C9NJ05256A
 | 
                     
                                
                                    
                                        | [35] | Xu, Y., Ding, Y., Zhang, L., et al. (2021) Highly Sensitive Enzyme-Free Glucose Sensor Based on CuO-NiO Nanocomposites by Electrospinning. Composites Communications, 25, Article ID: 100687. https://doi.org/10.1016/j.coco.2021.100687
 | 
                     
                                
                                    
                                        | [36] | Cheng, X., Zhang, J., Chang, H., et al. (2016) High Performance Cu/Cu2O Nanohybrid Electrocatalyst for Nonenzymatic Glucose Detection. Journal of Materials Chemistry B, 4, 4652-4656. https://doi.org/10.1039/C6TB01158F
 | 
                     
                                
                                    
                                        | [37] | Zhou, S., Feng, X., Shi, H., et al. (2013) Direct Growth of Vertically Aligned Arrays of Cu(OH)2 Nanotubes for the Electrochemical Sensing of Glucose. Sensors and Actuators B: Chemical, 177, 445-452. https://doi.org/10.1016/j.snb.2012.11.035
 | 
                     
                                
                                    
                                        | [38] | Li, Z., Xin, Y., Wu, W., et al. (2016) Topotactic Conversion of Copper(I) Phosphide Nanowires for Sensitive Electrochemical Detection of H2O2 Release From Living Cells. Analytical Chemistry, 88, 7724-7729. https://doi.org/10.1021/acs.analchem.6b01637
 | 
                     
                                
                                    
                                        | [39] | Kang, J., Sheng, J., Xie, J., et al. (2018) Tubular Cu(OH)2 Arrays Decorated with Nanothorny Co-Ni Bimetallic Carbonate Hydroxide Supported on Cu Foam: A 3D Hierarchical Core-Shell Efficient Electrocatalyst for the Oxygen Evolution Reaction. Journal of Materials Chemistry A, 6, 10064-10073. https://doi.org/10.1039/C8TA02492H
 | 
                     
                                
                                    
                                        | [40] | Shahrokhian, S., Khaki Sanati, E. and Hosseini, H. (2019) Advanced On-Site Glucose Sensing Platform Based on a New Architecture of Free-Standing Hollow Cu(OH)2 Nanotubes Decorated with CoNi-LDH Nanosheets on Graphite Screen-Printed Electrode. Nanoscale, 11, 12655-12671. https://doi.org/10.1039/C9NR02720C
 | 
                     
                                
                                    
                                        | [41] | Viswanathan, P., Park, J., Kang, D.K., et al. (2019) Polydopamine-Wrapped Cu/Cu(II) Nano-Heterostructures: An Efficient Electrocatalyst for Non-Enzymatic Glucose Detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 580, Article ID: 123689. https://doi.org/10.1016/j.colsurfa.2019.123689
 | 
                     
                                
                                    
                                        | [42] | Li, K., Fan, G., Yang, L., et al. (2014) Novel Ultrasensitive Non-Enzymatic Glucose Sensors Based on Controlled Flower-Like CuO Hierarchical Films. Sensors and Actuators B: Chemical, 199, 175-182. https://doi.org/10.1016/j.snb.2014.03.095
 | 
                     
                                
                                    
                                        | [43] | Yang, Q., Long, M., Tan, L., et al. (2015) Helical TiO2 Nanotube Arrays Modified by Cu-Cu2O with Ultrahigh Sensitivity for the Nonenzymatic Electro-Oxidation of Glucose. ACS Applied Materials & Interfaces, 7, 12719-12730. https://doi.org/10.1021/acsami.5b03401
 | 
                     
                                
                                    
                                        | [44] | Shinde, V.R., Mahadik, S.B., Gujar, T.P., et al. (2006) Supercapacitive Cobalt Oxide (Co3O4) Thin Films by Spray Pyrolysis. Applied Surface Science, 252, 7487-7492. https://doi.org/10.1016/j.apsusc.2005.09.004
 | 
                     
                                
                                    
                                        | [45] | Ding, Y., Wang, Y., Su, L., et al. (2010) Electrospun Co3O4 Nanofibers for Sensitive and Selective Glucose Detection. Biosensors and Bioelectronics, 26, 542-548. https://doi.org/10.1016/j.bios.2010.07.050
 | 
                     
                                
                                    
                                        | [46] | Ibupoto, Z.H., Elhag, S., AlSalhi, M.S., et al. (2014) Effect of Urea on the Morphology of Co3O4 Nanostructures and Their Application for Potentiometric Glucose Biosensor. Electroanalysis, 26, 1773-1781. https://doi.org/10.1002/elan.201400116
 | 
                     
                                
                                    
                                        | [47] | Zhou, T., Gao, W., Gao, Y., et al. (2017) Co3O4 Nanoparticles/MWCNTs Composites: A Potential Scaffold for Hydrazine and Glucose Electrochemical Detection. RSC Advances, 7, 50087-50096. https://doi.org/10.1039/C7RA10892C
 | 
                     
                                
                                    
                                        | [48] | Wei, M., Qiao, Y., Zhao, H., et al. (2018) Electrochemical Non-Enzymatic Glucose Sensors: Recent Progress and Perspectives. Chemical Communications, 56, 14553-14569. https://doi.org/10.1039/D0CC05650B
 | 
                     
                                
                                    
                                        | [49] | Ahmad, R., Tripathy, N., Ahn, M.S., et al. (2017) Highly Efficient Non-Enzymatic Glucose Sensor Based on CuO Modified Vertically-Grown ZnO Nanorods on Electrode. Scientific Reports, 7, Article No. 5715. https://doi.org/10.1038/s41598-017-06064-8
 | 
                     
                                
                                    
                                        | [50] | Wang, Y., Bai, W., Nie, F., et al. (2015) A Non-Enzymatic Glucose Sensor Based on Ni/MnO2 Nanocomposite Modified Glassy Carbon Electrode. Electroanalysis, 27, 2399-2405. https://doi.org/10.1002/elan.201500049
 | 
                     
                                
                                    
                                        | [51] | Wang, H., Yang, W., Wang, X., et al. (2020) A CeO2@MnO2 Core-Shell Hollow Heterojunction as Glucose Oxidase-Like Photoenzyme for Photoelectrochemical Sensing of Glucose. Sensors and Actuators B: Chemical, 304, Article ID: 127389. https://doi.org/10.1016/j.snb.2019.127389
 | 
                     
                                
                                    
                                        | [52] | Li, X., Sun, Y., Zhang, X., et al. (2018) CO3O4 Nanosheets Anchored on SiO2 Nanospheres for Non-Enzymatic Glucose Sensor. Journal of Nanoscience and Nanotechnology, 18, 7251-7254. https://doi.org/10.1166/jnn.2018.15450
 | 
                     
                                
                                    
                                        | [53] | Tang, X.Q., Zhang, Y.D., Jiang, Z.W., et al. (2018) Fe3O4 and Metal-Organic Framework MIL-101(Fe) Composites Catalyze Luminol Chemiluminescence for Sensitively Sensing Hydrogen Peroxide and Glucose. Talanta, 179, 43-50. https://doi.org/10.1016/j.talanta.2017.10.049
 | 
                     
                                
                                    
                                        | [54] | Liu, Y., Zhao, W., Li, X., et al. (2020) Hierarchical α-Fe2O3 Microcubes Supported on Ni Foam as Non-Enzymatic Glucose Sensor. Applied Surface Science, 512, Article ID: 145710. https://doi.org/10.1016/j.apsusc.2020.145710
 |