|
[1]
|
Carvalho, M.J., Laranjo, M., Abrantes, A.M., Torgal, I., Botelho, M.F. and Oliveira, C.F. (2015) Clinical Translation for Endometrial Cancer Stem Cells Hypothesis. Cancer and Metastasis Reviews, 34, 401-416. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Suarez, A.A., Felix, A.S. and Cohn, D.E. (2017) Bokhman Re-dux: Endometrial Cancer “Types” in the 21st Century. Gynecologic Oncology, 144, 243-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Cancer Genome Atlas Research Network, Kandoth, C., Schultz, N., Cherniack, A.D., Akbani, R., Liu, Y., Shen, H., Robertson, A.G., Pashtan, I., Shen, R., Benz, C.C., Yau, C., Laird, P.W., Ding, L., Zhang, W., Mills, G.B., Kucherlapati, R., Mardis, E.R. and Levine, D.A. (2013) Integrated Genomic Characterization of Endometrial Carcinoma. Nature, 497, 67-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Alabiad, M.A., Harb, O.A., Hefzi, N., Ahmed, R.Z., Osman, G., Shalaby, A.M., Alnemr, A.A. and Saraya, Y.S. (2021) Prog-nostic and Clinicopathological Significance of TMEFF2, SMOC-2, and SOX17 Expression in Endometrial Carcinoma. Experimental and Molecular Pathology, 122, Article ID: 104670. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Song, Y., Pan, S., Li, K., Chen, X., Wang, Z.P. and Zhu, X. (2021) Insight into the Role of Multiple Signaling Pathways in Regulating Cancer Stem Cells of Gynecologic Cancers. Seminars in Cancer Biology, In Press. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Katoh, M. and Katoh, M. (2017) Molecular Genetics and Targeted Therapy of WNT-Related Human Diseases (Review). International Journal of Molecular Medicine, 40, 587-606. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Cunnea, P., Fotopoulou, C., Ploski, J., Trillsch, F., Mah-ner, S. and Kessler, M. (2021) Changes in Stem Cell Regulation and Epithelial Organisation during Carcinogenesis and Disease Progression in Gynaecological Malignancies. Cancers, 13, Article No. 3349. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hou, X., Tan, Y., Li, M., Dey, S.K. and Das, S.K. (2004) Canonical Wnt Signaling Is Critical to Estrogen-Mediated Uterine Growth. Molecular Endocrinology, 18, 3035-3049. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Miller, C. and Sassoon, D.A. (1998) Wnt-7a Maintains Appropriate Uterine Patterning during the Development of the Mouse Female Reproductive Tract. Development, 125, 3201-3211. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Boretto, M., Cox, B., Noben, M., Hendriks, N., Fassbender, A., Roose, H., Amant, F., Timmerman, D., Tomassetti, C., Vanhie, A., Meuleman, C., Ferrante, M. and Vankelecom, H. (2017) Development of Organoids from Mouse and Human Endometrium Showing Endometrial Epithelium Physiology and Long-Term Expandability. Development, 144, 1775-1786. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kiewisz, J., Wasniewski, T. and Kmiec, Z. (2015) Participation of WNT and β-Catenin in Physiological and Pathological Endometrial Changes: Association with Angiogenesis. BioMed Research International, 2015, Article ID: 854056. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wang, Y., van der Zee, M., Fodde, R. and Blok, L.J. (2010) Wnt/Β-Catenin and Sex Hormone Signaling in Endometrial Homeostasis and Cancer. Oncotarget, 1, 674-684. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, Y., Hanifi-Moghaddam, P., Hanekamp, E.E., Kloosterboer, H.J., Franken, P., Veldscholte, J., van Doorn, H.C., Ewing, P.C., Kim, J.J., et al. (2009) Progesterone Inhibition of Wnt/Beta-Catenin Signaling in Normal Endometrium and Endometrial Cancer. Clinical Cancer Research, 15, 5784-5793. [Google Scholar] [CrossRef]
|
|
[14]
|
Gunin, A.G., Emelianov, V.U., Mironkin, I.U., Morozov, M.P. and Tolmachev, A.S. (2004) Lithium Treatment Enhances Estradiol-Induced Proliferation and Hyperplasia For-mation in the Uterus of Mice. European Journal of Obstetrics & Gynecology and Reproductive Biology, 114, 83-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Sell, S. (2004) Stem Cell Origin of Cancer and Differentiation Therapy. Critical Reviews in Oncology/Hematology, 51, 1-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kuşoğlu, A. and Biray Avcı, Ç. (2019) Cancer Stem Cells: A Brief Review of the Current Status. Gene, 681, 80-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kusunoki, S., Kato, K., Tabu, K., Inagaki, T., Okabe, H., Kaneda, H., Suga, S., Terao, Y., Taga, T. and Takeda, S. (2013) The Inhibitory Effect of Salinomycin on the Proliferation, Migra-tion and Invasion of Human Endometrial Cancer Stem-Like Cells. Gynecologic Oncology, 129, 598-605. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Syed, S.M., Kumar, M., Ghosh, A., Tomasetig, F., Ali, A., Whan, R.M., Alterman, D. and Tanwar, P.S. (2020) Endometrial Axin2+ Cells Drive Epithelial Homeostasis, Regenera-tion, and Cancer Following Oncogenic Transformation. Cell Stem Cell, 26, 64-80.E13. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Lu, H., Ju, D.D., Yang, G.D., Zhu, L.Y., Yang, X.M., Li, J., Song, W.W., Wang, J.H., Zhang, C.C., Zhang, Z.G. and Zhang, R. (2019) Targeting Cancer Stem Cell Signature Gene SMOC-2 Overcomes Chemoresistance and Inhibits Cell Proliferation of Endometrial Carcinoma. EBioMedicine, 40, 276-289. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhou, W., Wang, K., Wang, J., Qu, J., Du, G. and Zhang, Y. (2019) SOX17 Inhibits Tumor Metastasis via Wnt Signaling in Endometrial Cancer. OncoTargets and Ther-apy, 12, 8275-8286. [Google Scholar] [CrossRef]
|
|
[21]
|
Karaca, B., Bakır, E., Yerer, M.B., Cumaoğlu, A., Hamurcu, Z. and Eken, A. (2021) Doxazosin and Erlotinib Have Anticancer Effects in the Endometrial Cancer Cell and Important Roles in ERα and Wnt/β-Catenin Signaling Pathways. Journal of Biochemical and Molecular Toxicology, 35, e22905. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Nieto, M.A., Huang, R.Y., Jackson, R.A. and Thiery, J.P. (2016) EMT: 2016. Cell, 166, 21-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Smith, B.N. and Bhowmick, N.A. (2016) Role of EMT in Metasta-sis and Therapy Resistance. Journal of Clinical Medicine, 5, 17.
|
|
[24]
|
Mani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhang, C.C., Shipitsin, M., Campbell, L.L., Polyak, K., Brisken, C., Yang, J. and Weinberg, R.A. (2008) The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell, 133, 704-715. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wu, Z.Q., Li, X.Y., Hu, C.Y., Ford, M., Kleer, C.G. and Weiss, S.J. (2012) Canonical Wnt Signaling Regulates Slug Activity and Links Epithelial-Mesenchymal Transition with Epigenetic Breast Cancer 1, Early Onset (BRCA1) Repression. Proceedings of the National Academy of Sciences of the United States of America, 109, 16654-16659. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yook, J.I., Li, X.Y., Ota, I., Fearon, E.R. and Weiss, S.J. (2005) Wnt-Dependent Regulation of the E-Cadherin Repressor Snail. Journal of Biological Chemistry, 280, 11740-11748. [Google Scholar] [CrossRef]
|
|
[27]
|
Bian, Y., Chang, X., Liao, Y., Wang, J., Li, Y., Wang, K. and Wan, X. (2016) Promotion of Epithelial-Mesenchymal Transition by Frizzled2 Is Involved in the Metastasis of Endometrial Cancer. Oncology Reports, 36, 803-810. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wang, T., Wang, M., Fang, S., Wang, Q., Fang, R. and Chen, J. (2017) Fibulin-4 Is Associated with Prognosis of Endometrial Cancer Patients and Inhibits Cancer Cell Invasion and Metastasis via Wnt/β-Catenin Signaling Pathway. Oncotarget, 8, 18991-19012. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chen, P., Xing, T., Wang, Q., Liu, A., Liu, H., Hu, Y., Ji, Y., Song, Y. and Wang, D. (2019) MicroRNA-202 Inhibits Cell Migration and Invasion through Targeting FGF2 and Inac-tivating Wnt/β-Catenin Signaling in Endometrial Carcinoma. Bioscience Reports, 39, BSR20190680. [Google Scholar] [CrossRef]
|
|
[30]
|
Li, Y., Sun, D., Gao, J., Shi, Z., Chi, P., Meng, Y., Zou, C. and Wang, Y. (2018) MicroRNA-373 Promotes the Development of Endometrial Cancer by Targeting LATS2 and Activating the Wnt/β-Catenin Pathway. Journal of Cellular Biochemistry, 120, 8611-8618. [Google Scholar] [CrossRef] [PubMed]
|