|
[1]
|
Calle, E.E. and Kaaks, R. (2004) Overweight, Obesity and Cancer: Epidemiological Evidence and Proposed Mechanisms. Nature Reviews Cancer, 4, 579-591. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Racette, S.B., Deusinger, S.S. and De-usinger, R.H. (2003) Obesity: Overview of Prevalence, Etiology, and Treatment. Physical Therapy, 83, 276-288. [Google Scholar] [CrossRef]
|
|
[3]
|
Souza, M.R.D.A., Diniz, M.D.F.F.D., Medeiros-Filho, J.E.M.D. and Araújo, M.S.T.D. (2012) Metabolic Syndrome and Risk Factors for Non-Alcoholic Fatty Liver Disease. Arquivos de Gastroenterologia, 49, 89-96. [Google Scholar] [CrossRef]
|
|
[4]
|
Horton, J.D., Shimomura, I., Brown, M.S., Hammer, R.E., Goldstein, J.L. and Shimano, H. (1998) Activation of Cholesterol Synthesis in Preference to Fatty Acid Synthesis in Liver and Adipose Tissue of Transgenic Mice Overproducing Sterol Regulatory Element-Binding Protein-2. Journal of Clinical Investigation, 101, 2331-2339. [Google Scholar] [CrossRef]
|
|
[5]
|
Hua, X., Yokoyama, C., Wu, J., Briggs, M.R., Brown, M.S., Goldstein, J.L., et al. (1993) SREBP-2, a Second Sic- Helix-Loop-Helix-Leucine Zipper Protein That Stimulates Transcription by Bind-ing to a Sterol Regulatory Element. Proceedings of the National Academy of Sciences of the United States of America, 90, 11603-11607. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Brown, M.S. and Goldstein, J.L. (1997) The SREBP Pathway: Regulation of Cholesterol Metabolism by Proteolysis of a Membrane-Bound Transcription Factor. Cell, 89, 331-340. [Google Scholar] [CrossRef]
|
|
[7]
|
Shimano, H., Horton, J.D., Shimomura, I., Hammer, R.E., Brown, M.S. and Goldstein, J.L. (1997) Isoform 1c of Sterol Regulatory Element Binding Protein Is Less Active Than Isoform 1a in Livers of Transgenic Mice and in Cultured Cells. Journal of Clinical Investigation, 99, 846-854. [Google Scholar] [CrossRef]
|
|
[8]
|
Shimomura, I., Shimano, H., Horton, J.D., Goldstein, J.L. and Brown, M.S. (1997) Differential Expression of Exons 1a and 1c in MRNAs for Sterol Regulatory Element Binding Protein-1 in Human and Mouse Organs and Cultured Cells. Journal of Clinical Investigation, 99, 838-845. [Google Scholar] [CrossRef]
|
|
[9]
|
Horton, J.D., Shah, N.A., Warrington, J.A., Anderson, N.N., Park, S.W., Brown, M.S., et al. (2003) Combined Analysis of Oligonucleotide Microarray Data from Transgenic and Knockout Mice Identifies Direct SREBP Target Genes. Proceedings of the National Academy of Sciences of the United States of America, 100, 12027-12032. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Sato, R., Yang, J., Wang, X., Evans, M.J., Ho, Y.K., Goldstein, J.L., et al. (1994) Assignment of the Membrane Attachment, DNA Binding, and Transcriptional Activation Domains of Sterol Regulatory Element-Binding Protein-1 (SREBP-1). THE Journal of Biolcical Chemistry, 269, 17267-17273. [Google Scholar] [CrossRef]
|
|
[11]
|
Wang, X., Sato, R., Brown, M.S., Hua, X. and Goldstein, J.L. (1994) SREBP-1, a Membrane-Bound Transcription Factor Released by Sterol-Regulated Proteolysis. Cell, 77, 53-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Adams, C.M., Reitz, J., De Brabander, J.K., Feramisco, J.D., Li, L., Brown, M.S. and Goldstein, J.L. (2004) Cholesterol and 25-Hydroxycholesterol Inhibit Activation of SREBPs by Different Mechanisms, Both Involving SCAP and Insigs. Journal of Biological Chemistry, 279, 52772-52780. [Google Scholar] [CrossRef]
|
|
[13]
|
Yang, T., Espenshade, P.J., Wright, M.E., Yabe, D., Gong, Y., Aebersold, R., Goldstein, J.L. and Brown, M.S. (2002) Crucial Step in Cholesterol Homeostasis: Sterols Promote Binding of SCAP to INSIG-1, a Membrane Protein That Facilitates Retention of SREBPs in ER. Cell, 110, 489-500. [Google Scholar] [CrossRef]
|
|
[14]
|
Miller, E.A. and Schekman, R. (2013) COPII—A Flexible Vesicle Formation System. Current Opinion in Cell Biology, 25, 420-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Rawson, R.B., Zelenski, N.G., Nijhawan, D., Ye, J., Sakai, J., et al. (1997) Complementation Cloning of S2P, a Gene Encoding a Putative Metalloprotease Required for Intramembrane Cleavage of SREBPs. Molecular Cell, 1, 47-57. [Google Scholar] [CrossRef]
|
|
[16]
|
Sakai, J., Rawson, R.B., Espenshade, P.J., Cheng, D., Seegmiller, A.C., et al. (1998) Molecular Identification of the Sterol-Regulated Luminal Protease That Cleaves SREBPs and Controls Lipid Composition of Animal Cells. Molecular Cell, 2, 505-514. [Google Scholar] [CrossRef]
|
|
[17]
|
Horton, J.D., Goldstein, J.L. and Brown, M.S. (2002) SREBPs: Activators of the Complete Program of Cholesterol and Fatty Acid Synthesis in the Liver. Journal of Clinical Investigation, 109, 1125-1131. [Google Scholar] [CrossRef]
|
|
[18]
|
Long, Y.C. and Zierath, J.R. (2006) AMP-Activated Protein Kinase Sig-naling in Metabolic Regulation. Journal of Clinical Investigation, 116, 1776-1783. [Google Scholar] [CrossRef]
|
|
[19]
|
Garcia, D. and Shaw, R.J. (2017) AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Molecular Cell, 66, 789-800. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, Y., Xu, S., Mihaylova, M. M., Zheng, B., Hou, X., Jiang, B., et al. (2011) AMPK Phosphorylates and Inhibits SREBP Activity to Attenuate Hepatic Steatosis and Atherosclerosis in Diet-Induced Insulinresistant Mice. Molecular Cell, 13, 376-388. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Gowans, G.J., Hawley, S.A., Ross, F.A. and Hardie, D.G. (2013) AMP Is a True Physiological Regulator of AMP-Activated Protein Kinase by Both Allosteric Activation and Enhancing Net Phosphorylation. Cell Metabolism, 18, 556-566. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Li, N., Wang, Y., Neri, S., Zhen, Y., Fong, L.W.R. and Qiao, S.H. (2019).Tankyrase Disrupts Metabolic Homeostasis and Promotes Tumorigenesis by Inhibiting LKB1-AMPK Signalling. Nature Communications, 10, Article No. 4363.[CrossRef] [PubMed]
|
|
[23]
|
Day, E.A., Ford, R.J. and Steinberg, G.R. (2017) AMPK as a Therapeutic Target for Treating Metabolic Diseases. Trends in Endocrinology and Metabolism, 28, 545-560. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Gai, H., Zhou, F., Zhang, Y., Ai, J., Zhan, J., You, Y., et al. (2020) Coniferaldehyde Ameliorates the Lipid and Glucose Metabolism in Palmitic Acid‐induced HepG2 Cells via the LKB1/AMPK Signaling Pathway. Journal of Food Science, 85, 4050-4060. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Chen, Q., Liu, M., Yu, H., Li, J., Wang, S., Zhang, Y., et al. (2018) Scutellaria Baicalensis Regulates FFA Metabolism to Ameliorate NAFLD through the AMPK-Mediated SREBP Signal-ing Pathway. Journal of Natural Medicines, 72, 655-666. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Hai, Y.Q., Kim, D.Y., Kim, S.J., Jo, H.K., Kim, G.W. and Chung, S.H. (2013) Betulinic Acid Alleviates Non-Alcoholic Fatty Liver by Inhibiting SREBP1 Activity via the AMPK-mTOR-SREBP Signaling Pathway. Biochemical Pharmacology, 85, 1330-1340. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kamikubo, R., Kai, K., Tsuji-Naito, K. and Akagawa, M. (2016) β-Caryophyllene Attenuates Palmitate-induced Lipid Accumulation through AMPK Signaling by Activating CB2 Receptor in Human HepG2 Hepatocytes. Molecular Nutrition & Food Research, 60, 2228-2242. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Luo, L., Fang, K., Dan, X. and Gu, M. (2019) Crocin Ameliorates Hepatic Steatosis through Activation of AMPK Signaling in Db/db Mice. Lipids in Health and Disease, 18, Article No. 11. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Peng, C.H., Yang, M.Y., Yang, Y.S., Yu, C.C. and Wang, C.J. (2017) Antrodia Cinnamomea Prevents Obesity, Dyslipidemia, and the Derived Fatty Liver via Regulating AMPK and SREBP Signaling. The American Journal of Chinese Medicine, 45, 67-83. [Google Scholar] [CrossRef]
|
|
[30]
|
Guo, L., Kang, J.S., Park, Y.H., Je, B.I., Lee, Y.J., Kang, N.J., et al. (2020) S-Petasin Inhibits Lipid Accumulation in Oleic Acid-Induced HepG2 Cells through Activation of the AMPK Signaling Pathway. Food & Function, 11, 5664-5673. [Google Scholar] [CrossRef]
|
|
[31]
|
Yi, T., Jane, K., Jing, C., Ong, M., Lao, W.G., Jin, X.L., et al. (2017) Green Tea Polyphenols Ameliorate Non-Alcoholic Fatty Liver Disease through Upregulating AMPK Activation in High Fat Fed Zucker Fatty Rats. World Journal of Gastroenterology, 23, 3805-3814. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Dummler, B. and Hemmings, B.A. (2007) Physiological Roles of PKB/Akt Isoforms in Development and Disease. Biochemical Society Transactions, 35, 231-235. [Google Scholar] [CrossRef]
|
|
[33]
|
Szymonowicz, K., Oeck, S., Malewicz, N.M. and Jendrossek, V. (2018) New Insights into Protein Kinase B/Akt Signaling: Role of Localized Akt Activation and Compartment-Specific Target Proteins for the Cellular Radiation Response. Cancers, 10, Article No. 78. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wadhwa, B., Makhdoomi, U., Vishwakarma, R. and Malik, F. (2017) Protein Kinase B: Emerging Mechanisms of Isoform-Specific Regulation of Cellular Signaling in Cancer. An-ti-Cancer Drugs, 28, 569-580. [Google Scholar] [CrossRef]
|
|
[35]
|
Kim, J. and Guan, K.L. (2019) MTOR as a Central Hub of Nutrient Signalling and Cell Growth. Nature Cell Biology, 21, 63-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lim, W., Mayer, B. and Pawson, T. (2015) Cell Signaling: Princi-ples and Mechanisms. Garland Science, New York. [Google Scholar] [CrossRef]
|
|
[37]
|
Porstmann, T., Santos, C.R., Griffiths, B., Cully, M., Wu, M., Leevers, S., Griffiths, J.R., et al. (2008) SREBP Activity Is Regulated by MTORC1 and Contributes to Akt-Dependent Cell Growth. Cell Metabolism, 8, 224-236. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Hagiwara, A., Cornu, M., Cybulski, N., Polak, P., Betz, C., Trapa-ni, F., et al. (2012) Hepatic MTORC2 Activates Glycolysis and Lipogenesis through Akt, Glucokinase, and SREBP1c. Cell Metabolism, 15, 725-738. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhang, C., Hu, J., Sheng, L., Yuan, M., Wu, Y., Chen, L., et al. (2019) Ellagic Acid Ameliorates AKT-Driven Hepatic Steatosis in Mice by Suppressing De Novo Lipogenesis via the AKT/SREBP-1/FASN Pathway. Food & Function, 10, 3410-3420. [Google Scholar] [CrossRef]
|
|
[40]
|
Lim, S.C., Duong, H.Q., Parajuli, K.R. and Han, S.I. (2012) Pro-Apoptotic Role of the MEK/ERK Pathway in Ursodeoxycholic Acid-Induced Apoptosis in SNU601 Gastric Cancer Cells. Oncology Reports, 28, 1429-1434. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Tonin, F. and Arends, I.W.C.E. (2018) Latest Development in the Syn-thesis of Ursodeoxycholic Acid (UDCA): A Critical Review. Beilstein Journal of Organic Chemistry, 14, 470-483. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Hu, J., Hong, W., Yao, K.N., Zhu, X.H., Chen, Z.Y. and Ye, L. (2019) Ursodeoxycholic Acid Ameliorates Hepatic Lipid Metabolism in LO2 Cells by Regulating the AKT/mTOR/SREBP-1 Signaling Pathway. World Journal of Gastroenterology, 25, 1492-1501. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Lee, F.Y., Lee, H., Hubbert, M.L., Edwards, P.A. and Zhang, Y. (2006) FXR, a Multipurpose Nuclear Receptor. Trends in Biochemical Sciences, 31, 572-580. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zhang, Y., Kast-Woelbern, H.R. and Edwards, P.A. (2003) Natural Structural Variants of the Nuclear Receptor Farnesoid X Receptor Affect Transcriptional Activation. Journal of Biologi-cal Chemistry, 278, 104-110. [Google Scholar] [CrossRef]
|
|
[45]
|
Huber, R.M., Murphy, K., Miao, B., Link, J.R., Cunningham, M.R., Rupar, M.J., et al. (2002) Generation of Multiple Farnesoid-X-Receptor Isoforms through the Use of Alternative Pro-moters. Gene, 290, 35-43. [Google Scholar] [CrossRef]
|
|
[46]
|
Otte, K., Kranz, H., Kober, I., Thompson, P., Hoefer, M., Haubold, B., et al. (2003) Identification of Farnesoid X Receptor Beta as a Novel Mammalian Nuclear Receptor Sensing Lanosterol. Molecular and Cellular Biology, 23, 864-872. [Google Scholar] [CrossRef]
|
|
[47]
|
Weikum, E.R., Liu, X. and Ortlund, E.A. (2018) The Nucle-ar Receptor Superfamily: A Structural Perspective. Protein Science, 27, 1876-1892. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Devarakonda, S., Harp, J.M., Kim, Y., Ozyhar, A. and Rastinejad, F. (2003) Structure of the Heterodimeric Ecdysone Receptor DNA-Binding Complex. The EMBO Journal, 22, 5827-5840. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Wang, N., Zou, Q., Xu, J., Zhang, J. and Liu, J. (2018) Ligand Binding and Heterodimerization with Retinoid X Receptor a (RXRa) Induce Farnesoid X Receptor (FXR) Conformational Changes Affecting Coactivator Binding. Journal of Biological Chemistry, 293, 18180-18191. [Google Scholar] [CrossRef]
|
|
[50]
|
Laffitte, B.A., Kast, H.R., Nguyen, C.M., Zavacki, A.M., Moore, D.D., et al. (2000) Identification of the DNA Binding Specificity and Potential Target Genes for the Farnesoid Xactivated Receptor. Journal of Biological Chemistry, 275, 10638-10647. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Jia, W., Xie, G. and Jia, W. (2018) Bile Acid-Microbiota Crosstalk in Gastrointestinal Inflammation and Carcinogenesis. Nature Reviews Gastroenterology & Hepatology, 15, 111-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Massafra, V., Milona, A., Vos, H.R., Ramos, R.J.J., Gerrits, J., Willemsen, E.C.L., Ramos Pittol, J.M., Ijssennagger, N., Houweling, M., Prinsen, H., Verhoeven-Duif, N.M., Burgering, B.M.T. and Van Mil, S.W.C. (2017) Farnesoid X Receptor Activation Promotes Hepatic Amino Acid Catabolism and Ammonium Clearance in Mice. Gastroenterology, 152, 1462-1476. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Watanabe, M., Houten, S.M., Wang, L., Moschetta, A., Man-gelsdorf, D.J., Heyman, R.A., et al. (2004) Bile Acids Lower Triglyceride Levels Via a Pathway Involving FXR, SHP, and SREBP-1c. Journal of Clinical Investigation, 113, 1408-1418. [Google Scholar] [CrossRef]
|
|
[54]
|
Han, X., Cui, Z.-Y., Song, J., Piao, H.-Q., Lian, L.-H., Hou, L.-S., et al. (2019) Acanthoic Acid Modulates Lipogenesis in Non-alcoholic Fatty Liver Disease via FXR/LXRs-Dependent Manner. Chemico-Biological Interactions, 311, Article ID: 108794. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Liu, M., Zhang, G., Wu, S., Song, M., Wang, J., Cai, W., et al. (2020) Schaftoside Alleviates HFD-Induced Hepatic Lipid Accumulation in Mice Via Upregulating Farnesoid X Receptor. Journal of Ethnopharmacology, 255, Article ID: 112776. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Yi, L., Ding, D., Huang, Q., Oda, Y., Takagi, S., Fukami, T., et al. (2017) Downregulation of MiR-192 Causes Hepatic Steatosis and Lipid Accumulation by Inducing SREBF1: Novel Mechanism for Bisphenol A-Triggered Non-Alcoholic Fatty Liver Disease. Biochimica et Biophysica Acta (BBA): Mo-lecular and Cell Biology of Lipids, 1862, 869-882. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R. and Rajewsky, N. (2008) Widespread Changes in Protein Synthesis Induced by MicroRNAs. Nature, 455, 58-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G. and Tuschl, T. (2004) Human Argonaute2 Mediates RNA Cleavage Targeted by MiRNAs and SiRNAs. Molecular Cell, 15, 185-197. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
van Niel, G., D’Angelo, G. and Raposo, G. (2018) Shedding Light on the Cell Biology of Extracellular Vesicles. Nature Reviews Molecular Cell Biology, 19, 213-228. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Pan, J.H., Abernathy, B., Kim, Y.J., Lee, J.H., Kim, J.H., Shin, E.C. and Kim, J.K. (2017) Cruciferous Vegetables and Colorectal Cancer Prevention through MicroRNA Regulation: A Re-view. Critical Reviews in Food Science and Nutrition, 58, 2026-2038. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Shen, L., Zhang, Y., Du, J., Chen, L., Luo, J., Li, X., Li, M., Tang, G., Zhang, S. and Zhu, L. (2016) MicroRNA-23a Regulates 3T3-L1 Adipocyte Differentiation. Gene, 575, 761-764. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Song, G., Xu, G., Ji, C., Shi, C., Shen, Y., Chen, L., Zhu, L., Yang, L., Zhao, Y. and Guo, X. (2014) The Role of MicroRNA-26b in Human Adipocyte Differentiation and Prolif-eration. Gene, 533, 481-487. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Lie, S., Morrison, J.L., Williams-Wyss, O., Suter, C.M., Hum-phreys, D.T., Ozanne, S.E., Zhang, S., MacLaughlin, S.M., Kleemann, D.O., Walker, S.K., et al. (2016) Impact of Ma-ternal Undernutrition Around the Time of Conception on Factors Regulating Hepatic Lipid Metabolism and MicroRNAs in Singleton and Twin Fetuses. American Journal of Physiology-Endocrinology and Metabolism, 310, e148-e159. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Massart, J., Katayama, M. and Krook, A. (2016) MicroManaging Glucose and Lipid Metabolism in Skeletal Muscle: Role of MicroRNAs. Biochimica et Biophysica Acta (BBA) - Molecu-lar and Cell Biology of Lipids, 1861, 2130-2138. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Baffy, G. (2015) MicroRNAs in Nonalcoholic Fatty Liver Dis-ease. Journal of Clinical Medicine, 4, 1977-1988. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Tessitore, A., Cicciarelli, G., Del Vecchio, F., Gaggiano, A., Verzella, D., Fischietti, M., Mastroiaco, V., Vetuschi, A., Sferra, R., Barnabei, R., et al. (2016) MicroRNA Expression Analysis in High Fat Diet-Induced NAFLD-NASH-HCC Progression: Study on C57BL/6J Mice. BMC Cancer, 16, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Kida, K., Nakajima, M., Mohri, T., Oda, Y., Takagi, S., Fukami, T., et al. (2011) PPARα Is Regulated by MiR-21 and MiR-27b in Human Liver. Pharmaceutical Research, 28, 2467-2476. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Zhong, D., Huang, G., Zhang, Y., Rajeev, K.G., Tuschl, T., Manoharan, M., et al. (2013) MicroRNA-1 and MicroRNA-206 Suppress LXRα-Induced Lipogenesis in Hepatocytes. Cellular Signalling, 25, 1429-1437. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Krützfeldt, J., Rajewsky, N., Braich, R., Rajeev, K.G., Tuschl, T., Manoharan, M., et al. (2005) Silencing of MicroRNAs in Vivo with ‘Antagomirs’. Nature, 438, 685-689. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Cheung, O., Puri, P., Eicken, C., Contos, M.J., Mirshahi, F., Maher, J.W., et al. (2010) Nonalcoholic Steatohepatitis Is Associated with Altered Hepatic MicroRNA Expression. Hepatology, 48, 1810-1820. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Horie, T., Baba, O., Kuwabara, Y., Chujo, Y., Watanabe, S., Kinoshita, M., et al. (2012) MicroRNA-33 Deficiency Reduces the Progression of Atherosclerotic Plaque in ApoE/ Mice. Journal of the American Heart Association Cardiovascular & Cerebrovascular Disease, 1, Article ID: e003376. [Google Scholar] [CrossRef]
|
|
[72]
|
Horie, T., Nishino, T., Baba, O., Kuwabara, Y., Nakao, T., Nishi-ga, M., et al. (2013) MicroRNA-33 Regulates Sterol Regulatory Element-Binding Protein 1 Expression in Mice. Nature Communications, 4, Article No. 2883. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Calkin, A.C. and Tontonoz, P. (2012) Transcriptional Integration of Me-tabolism by the Nuclear Sterol-Activated Receptors LXR and FXR. Nature Reviews Molecular Cell Biology, 13, 213-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Zhao, X.-Y., Xiong, X., Liu, T., Mi, L., Peng, X., Rui, C., Guo, L., et al. (2018) Long Noncoding RNA Licensing of Obesity-Linked Hepatic Lipogenesis and NAFLD Pathogenesis. Nature Communications, 9, Article No. 2986. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Tao, X. and Rong, J. (2019) Angiotensinogen in Hepatocytes Contributes to Western Diet-Induced Liver Steatosis. SSRN Electronic Journal. [Google Scholar] [CrossRef]
|
|
[76]
|
Miele, L., Dall’Armi, V., Cefalo, C., Nedovic, B., Arzani, D., Amore, R., et al. (2014) A Case-Control Study on the Effect of Metabolic Gene Polymorphisms, Nutrition, and Their Interaction on the Risk of Non-Alcoholic Fatty Liver Disease. Genes & Nutrition, 9, Article No. 383. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Xyzab, C., Hgxab, C., Zhwab, C., Li, B., Jiang, H.Y., Li, D.L., et al. (2020) In Vitro and in Vivo Approaches for Identifying the Role of Aryl Hydrocarbon Receptor in the Development of Nonalcoholic Fatty Liver Disease. Toxicology Letters, 319, 85-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Guo, D., Bell, E.H., Mischel, P. and Chakravarti, A. (2014) Tar-geting SREBP-1-Driven Lipid Metabolism to Treat Cancer. Current Pharmaceutical Design, 20, 2619-2626. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Ediriweera, M.K., Tennekoon, K.H. and Samarakoon, S.R. (2019) Role of the PI3K/AKT/mTOR Signaling Pathway in Ovarian Cancer: Biological and Therapeutic Significance. Seminars in Cancer Biology, 59, 147-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Jiang, L., Zhang, H., Xiao, D., Wei, H. and Chen, Y. (2021) Farnesoid X Receptor (FXR): Structures and Ligands. Computational and Structural Biotechnology Journal, 19, 2148-2159. [Google Scholar] [CrossRef] [PubMed]
|