|
[1]
|
Burkart, M.D., Hazari, N., Tway, C.L., et al. (2019) Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization. ACS Catalysis, 9, 7937-7956. [Google Scholar] [CrossRef]
|
|
[2]
|
Guo, Q., Liang, F., Li, X.-B., et al. (2019) Efficient and Selective CO2 Reduction Integrated with Organic Synthesis by Solar Energy. Chem, 5, 2605-2616. [Google Scholar] [CrossRef]
|
|
[3]
|
Wang, G., Chen, J., Ding, Y., et al. (2021) Electro-catalysis for CO2 Conversion: from Fundamentals to Value-Added Products. Chemical Society Reviews, 50, 4993-5061. [Google Scholar] [CrossRef]
|
|
[4]
|
Zou, Y. and Wang, S. (2021) An Investigation of Active Sites for Elec-trochemical CO2 Reduction Reactions: From in Situ Characterization to Rational Design. Advanced Science, 8, Article ID: 2003579. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Hori, Y. (2008) Electrochemical CO2 Reduction on Metal Electrodes. Springer, New York.
|
|
[6]
|
孟怡辰, 况思宇, 刘海, 范群, 马新宾, 张生. 面向CO2电化学转化的铜基催化剂研究进展[J]. 物理化学学报, 2021, 37(5): 47-63.
|
|
[7]
|
Zheng, Y., Vasileff, A., Zhou, X., et al. (2019) Understanding the Roadmap for Electrochemical Reduction of CO2 to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Cata-lysts. Journal of the American Chemical Society, 141, 7646-7659. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Niu, D., Wei, C., Lu, Z., et al. (2021) Cu2O-Ag Tandem Catalysts for Selective Electrochemical Reduction of CO2 to C2 Products. Molecules, 26, Article No. 2175. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Sun, Z., Ma, T., Tao, H., et al. (2017) Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials. Chem, 3, 560-587. [Google Scholar] [CrossRef]
|
|
[10]
|
Yang, J., Guo, Y., Lu, W., et al. (2018) Emerging Applications of Plasmons in Driving CO2 Reduction and N2 Fixation. Advanced Materials, 30, Article ID: 1802227. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kibria, M.G., Edwards, J.P., Gabardo, C.M., et al. (2019) Electrochemical CO2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. Advanced Materials, 31, Article ID: 1807166. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Cheng, T., Xiao, H. and Goddard, W.A. (2016) Reaction Mecha-nisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water. Journal of the American Chemical Society, 138, 13802-13805. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Peterson, A.A., Abild-Pedersen, F., Studt, F., et al. (2010) How Copper Catalyzes the Electroreduction of Carbon Dioxide into Hydrocarbon Fuels. Energy & Environmental Science, 3, 1311-1315. [Google Scholar] [CrossRef]
|
|
[14]
|
Montoya, J.H., Shi, C., Chan, K., et al. (2015) Theoretical In-sights into a CO Dimerization Mechanism in CO2 Electroreduction. The Journal of Physical Chemistry Letters, 6, 2032-2037. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Nie, X., Esopi, M.R., Janik, M.J., et al. (2013) Selec-tivity of CO2 Reduction on Copper Electrodes: The Role of the Kinetics of Elementary Steps. Angewandte Chemie Inter-national Edition, 52, 2459-2462. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kuhl, K.P., Hatsukade, T., Cave, E.R., et al. (2014) Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces. Journal of the American Chemi-cal Society, 136, 14107-14113. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hoang, T.T.H., Ma, S., Gold, J.I., et al. (2017) Nanoporous Copper Films by Additive-Controlled Electrodeposition: CO2 Reduction Catalysis. ACS Catalysis, 7, 3313-3321. [Google Scholar] [CrossRef]
|
|
[18]
|
Schouten, K.J.P., Qin, Z., Pérez Gallent, E., et al. (2012) Two Path-ways for the Formation of Ethylene in CO Reduction on Single-Crystal Copper Electrodes. Journal of the American Chemical Society, 134, 9864-9867. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Bertheussen, E., Verdaguer-Casadevall, A., Ravasio, D., et al. (2016) Acet-aldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper. An-gewandte Chemie International Edition, 55, 1450-1454. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Xiao, H., Cheng, T. and Goddard, W.A. (2017) Atomistic Mechanisms Underlying Selectivities in C1 and C2 Products from Elec-trochemical Reduction of CO on Cu(111). Journal of the American Chemical Society, 139, 130-136. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Song, C. (2006) Global Challenges and Strategies for Control, Conver-sion and Utilization of CO2 for Sustainable Development Involving Energy, Catalysis, Adsorption and Chemical Pro-cessing. Catalysis Today, 115, 2-32. [Google Scholar] [CrossRef]
|
|
[22]
|
Ross, M.B., De Luna, P., Li, Y., et al. (2019) Designing Materi-als for Electrochemical Carbon Dioxide Recycling. Nature Catalysis, 2, 648-658. [Google Scholar] [CrossRef]
|
|
[23]
|
Li, L., Li, X., Sun, Y., et al. (2022) Rational Design of Electrocat-alytic Carbon Dioxide Reduction for a Zero-Carbon Network. Chemical Society Reviews, 51, 1234-1252. [Google Scholar] [CrossRef]
|
|
[24]
|
Fan, Q., Zhang, X., Ge, X., et al. (2021) Manipulating Cu Nanoparticle Surface Oxidation States Tunes Catalytic Selectivity toward CH4 or C2+ Products in CO2 Electroreduction. Advanced En-ergy Materials, 11, Article ID: 2101424. [Google Scholar] [CrossRef]
|
|
[25]
|
Zhuang, T., Pang, Y., Liang, Z., et al. (2018) Copper Nanocavities Nonfine Intermediates for Efficient Electrosynthesis of C3 Alcohol Fuels from Carbon Monoxide. Nature Catalysis, 1, 946-951. [Google Scholar] [CrossRef]
|
|
[26]
|
Spinner, N.S., Vega, J.A. and Mustain, W.E.J.C. (2011) Recent Progress in the Electrochemical Conversion and Utilization of CO2. Catalysis Science & Technology, 2, 19-28. [Google Scholar] [CrossRef]
|
|
[27]
|
Sa, Y.J., Lee, C.W., Lee, S.Y., et al. (2020) Catalyst-Electrolyte Inter-face Chemistry for Electrochemical CO2 Reduction. Chemical Society Reviews, 49, 6632-6665. [Google Scholar] [CrossRef]
|
|
[28]
|
Burdyny, T. and Smith, W.A. (2019) CO2 Reduction on Gas-Diffusion Electrodes and Why Catalytic Performance Must Be Assessed at Commercially-Relevant Conditions. Energy & Envi-ronmental Science, 12, 1442-1453. [Google Scholar] [CrossRef]
|
|
[29]
|
Chang, X., Wang, T., Yang, P., et al. (2019) The Development of Co-catalysts for Photoelectrochemical CO2 Reduction. Advanced Materials, 31, e1804710. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Varela, A.S., Ranjbar Sahraie, N., Steinberg, J., et al. (2015) Met-al-Doped Nitrogenated Carbon as an Efficient Catalyst for Direct CO2 Electroreduction to CO and Hydrocarbons. An-gewandte Chemie International Edition, 54, 10758-10762. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yuan, X.T., Chen, S., Cheng, D.F., et al. (2021) Controllable Cu0-Cu+ Sites for Electrocatalytic Reduction of Carbon Dioxide. An-gewandte Chemie International Edition, 60, 15344-15347. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Favaro, M., Xiao, H., Cheng, T., et al. (2017) Subsurface Oxide Plays a Critical Role in CO2 Activation by Cu(111) Surfaces to Form Chemisorbed CO2, the First Step in Reduction of CO2. Proceedings of the National Academy of Sciences of the United States of America, 114, 6706-6711. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Fields, M., Hong, X., Nørskov, J.K., et al. (2018) Role of Subsurface Oxygen on Cu Surfaces for CO2 Electrochemical Reduction. The Journal of Physical Chemistry C, 122, 16209-16215. [Google Scholar] [CrossRef]
|
|
[34]
|
Jiang, Y., Wang, X., Duan, D., et al. (2022) Structural Reconstruction of Cu2O Superparticles toward Electrocatalytic CO2 Reduction with High C2+ Products Selectivity. Advanced Science, Article ID: 2105292. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhan, C., Dattila, F., Rettenmaier, C., et al. (2021) Revealing the CO Coverage-Driven C-C Coupling Mechanism for Electrochemical CO2 Reduction on Cu2O Nanocubes via Operando Ra-man Spectroscopy. ACS Catalysis, 11, 7694-7701. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lee, S., Park, G. and Lee, J. (2017) Importance of Ag-Cu Biphasic Boundaries for Selective Electrochemical Reduction of CO2 to Ethanol. ACS Catalysis, 7, 8594-8604. [Google Scholar] [CrossRef]
|
|
[37]
|
Silva, B.C.E., Irikura, K., Flor, J.B.S., et al. (2020) Electrochemical Preparation of Cu/Cu2O-Cu(BDC) Metal-Organic Framework Electrodes for Photoelectrocatalytic Reduction of CO2. Journal of CO2 Utilization, 42, Article ID: 101299. [Google Scholar] [CrossRef]
|
|
[38]
|
Tong, H., Ouyang, S., Bi, Y., et al. (2012) Nano-Hotocatalytic Materials: Possibilities and Challenges. Advanced Materials, 24, 229-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Yang, P.-P., Zhang, X.-L., Gao, F.-Y., et al. (2020) Protecting Cop-per Oxidation State via Intermediate Confinement for Selective CO2 Electroreduction to C2+ Fuels. Journal of the Ameri-can Chemical Society, 142, 6400-6408. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Feroze, M.T., Sami, S.K., Doonyapisut, D., et al. (2020) Electrochemical Reduction of CO2 into C1 and C2 Hydrocarbons Using Dendritic Cu and Cu2O Electrodes. Chemelectrochem, 7, 730-736. [Google Scholar] [CrossRef]
|
|
[41]
|
Rudel, H.E., Lane, M.K.M., Muhich, C.L., et al. (2020) Toward Informed Design of Nanomaterials: A Mechanistic Analysis of Structure-Property-Function Relationships for Faceted Nanoscale Metal Oxides. ACS Nano, 14, 16472-16501. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Shang, Y. and Guo, L. (2015) Facet-Controlled Synthetic Strategy of Cu2O-Based Crystals for Catalysis and Sensing. Advanced Science, 2, Article ID: 1500140. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Gao, Y., Wu, Q., Liang, X., et al. (2020) Cu2O Nanoparticles with Both {100} and {111} Facets for Enhancing the Selectivity and Activity of CO2 Electroreduction to Ethylene. Advanced Science, 7, Article ID: 1902820. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Luo, H., Li, B., Ma, J.-G., et al. (2022) Surface Modification of Nano-Cu2O for Controlling CO2 Electrochemical Reduction to Ethylene and Syngas. Angewandte Chemie-International Edition, 134, e202116736. [Google Scholar] [CrossRef]
|
|
[45]
|
Deng, B., Huang, M., Li, K., et al. (2021) The Crystal Plane Is Not the Key Factor for CO2-to-Methane Electrosynthesis on Reconstructed Cu2O Microparticles. Angewandte Chemie Inter-national Edition, 61, e202114080. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Peng, Y., Lu, B.Z. and Chen, S.W. (2018) Carbon-Supported Single Atom Catalysts for Electrochemical Energy Conversion and Storage. Advanced Materials, 30, Article ID: 1801995. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Geioushy, R.A., Khaled, M.M., Hakeem, A.S., et al. (2017) High Efficiency Graphene/Cu2O Electrode for the Electrochemical Reduction of Carbon Dioxide to Ethanol. Journal of Elec-troanalytical Chemistry, 785, 138-143. [Google Scholar] [CrossRef]
|
|
[48]
|
Gao, Y.G., Yu, S.Q., Zhou, P., et al. (2022) Promoting Elec-trocatalytic Reduction of CO2 to C2H4 Production by Inhibiting C2H5OH Desorption from Cu2O/C Composite. Small, 18, Article ID: 2105212. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Li, X., Wu, X., Lyu, X., et al. (2022) Recent Advances in Met-al-Based Electrocatalysts with Hetero-Interfaces for CO2 Reduction Reaction. Chem Catalysis, 2, 262-291. [Google Scholar] [CrossRef]
|
|
[50]
|
Roy, A., Jadhav, H.S. and Seo, J.G. (2021) Cu2O/CuO Electro-catalyst for Electrochemical Reduction of Carbon Dioxide to Methanol. Electroanalysis, 33, 705-712. [Google Scholar] [CrossRef]
|
|
[51]
|
Wang, S.W., Kou, T.Y., Varley, J.B., et al. (2021) Cu2O/CuS Nano-composites Show Excellent Selectivity and Stability for Formate Generation via Electrochemical Reduction of Carbon Dioxide. ACS Materials Letters, 3, 100-109. [Google Scholar] [CrossRef]
|
|
[52]
|
Das, S., Perez-Ramirez, J., Gong, J.L., et al. (2020) Core-Shell Structured Catalysts for Thermocatalytic, Photocatalytic, and Electrocatalytic Conversion of CO2. Chemical Society Reviews, 49, 2937-3004. [Google Scholar] [CrossRef]
|
|
[53]
|
Tan, X.Y., Yu, C., Zhao, C.T., et al. (2019) Restructuring of Cu2O to Cu2O@Cu-Metal-Organic Frameworks for Selective Electrochemical Reduction of CO2. ACS Applied Materials & In-terfaces, 11, 9904-9910. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Zhu, S.K., Ren, X.N., Li, X.X., et al. (2021) Core-Shell ZnO@Cu2O as Catalyst to Enhance the Electrochemical Reduction of Carbon Dioxide to C2 Products. Catalysts, 11, Article No. 535. [Google Scholar] [CrossRef]
|