|
[1]
|
Bago, B. (2000) Putative Sites for Nutrient Uptake in Arbuscular Mycorrhizal Fungi. Plant and Soil, 226, 263-274. [Google Scholar] [CrossRef]
|
|
[2]
|
Abbott, L.K. and Robson, A.D. (1991) Factors Influencing the Occurrence of Vesicular-Arbuscular Mycorrhizas. Agriculture, Ecosystems & Environment, 35, 121-150. [Google Scholar] [CrossRef]
|
|
[3]
|
Allen, M.F. (1996) Te Ecology of Arbuscular Mycorrhizas: A Lookback into the 20th Century and a Peek into the 21st. Mycological Research, 100, 769-782. [Google Scholar] [CrossRef]
|
|
[4]
|
Smith, S.E. and Read, D.J. (2008) Mycorrhizal Symbiosis. The Quarterly Review of Biology, 3, 273-281.
|
|
[5]
|
Bolan, N.S. (1991) A Critical Review on the Role of Mycorrhizal Fungi in the Uptake of Phosphorus by Plants. Plant and Soil, 134, 189-207. [Google Scholar] [CrossRef]
|
|
[6]
|
Jackobsen, G. (1993) External Hyphae of Vesicular-Arbuscular Mycorrhizal Fungi Associated with Trifolium subterraneum L. 1. Spread of Hyphae and Phosphorus Inflow into Roots. The New Phytologist, 120, 371-380. [Google Scholar] [CrossRef]
|
|
[7]
|
Ainsworth, E.A. and Long, S.P. (2021) 30 Years of Free-Air Carbon Dioxide Enrichment (FACE): What Have We Learned about Future Crop Productivity and Its Potential for Adaptation? Global Change Biology, 27, 27-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Casper, J., et al. (2016) Growth and Yield Stimulation under Elevated CO2 and Drought: A Meta-Analysis on Crops. Environmental and Experimental Botany, 122, 150-157. [Google Scholar] [CrossRef]
|
|
[9]
|
Habeeb, T.H., Abdel-Mawgoud, M., Yehia, R.S., Khalil, A.M.A., Saleh, A.M. and AbdElgawad, H. (2020) Interactive Impact of Arbuscular Mycorrhizal Fungi and Elevated CO2 on Growth and Functional Food Value of Thymus vulgare. Journal of Fungi, 6, 168. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Becklin, K.M., Mullinix, G.W.R. and Ward, J.K. (2016) Host Plant Physiology and Mycorrhizal Functioning Shift across a Glacial Through Future CO2 Gradient. Plant Physiology, 172, 789-801. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Baslam, M., Erice, G. and Goicoechea, N. (2012) Impact of Arbuscular Mycorrhizal Fungi (AMF) and Atmospheric CO2 Concentration on the Biomass Production and Partitioning in the Forage Legume Alfalfa. Symbiosis, 58, 171-181. [Google Scholar] [CrossRef]
|
|
[12]
|
Saleh, A.M., Abdel-Mawgoud, M., Hassan, A.R., Habeeb, T.H., Yehia, R.S. and AbdElgawad, H. (2020) Global Metabolic Changes Induced by Arbuscular Mycorrhizal Fungi in Oregano Plants Grown under Ambient and Elevated Levels of Atmospheric CO2. Plant Physiology and Biochemistry, 151, 255-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Goicoechea, N., Baslam, M., Erice, G. and Irigoyen, J.J. (2014) Increased Photosynthetic Acclimation in Alfalfa Associated with Arbuscular Mycorrhizal Fungi (AMF) and Cultivated in Greenhouse under Elevated CO2. Journal of Plant Physiology, 171, 1774-1781. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhu, X.C., Song, F.B., Liu, S.Q. and Liu, F.L. (2016) Arbuscular Mycorrhiza Improve Growth, Nitrogen Uptake, and Nitrogen Use Efficiency in Wheat Grown under Elevated CO2. Mycorrhiza, 26, 133-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Shi, S., Luo, X., Wen, M., Dong, X., Sharifi, S., Xie, D. and He, X. (2021) Funneliformis Mosseae Improves Growth and Nutrient Accumulation in Wheat by Facilitating Soil Nutrient Uptake under Elevated CO2 at Daytime, Not Nighttime. Journal of Fungi (Basel), 7, 458. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
苑学霞, 林先贵, 张华勇, 等. 大气CO2浓度升高对稻麦轮作下土壤中AM真菌多样性的影响[J]. 土壤, 2005, 37(6): 659-662. [Google Scholar] [CrossRef]
|
|
[17]
|
苑学霞, 林先贵, 褚海燕, 等. CO2浓度倍增对AM真菌及其对绿豆接种效应的影响[J]. 农业环境科学学报, 2007, 26(1): 211-215. [Google Scholar] [CrossRef]
|
|
[18]
|
Neill, E.G., O’Neill, R.V. and Norby, R.J. (1991) Hierarchy Theory as a Guide to Mycorrhizal Research on Large- Scale Problems. Environmental Pollution, 73, 271-284. [Google Scholar] [CrossRef]
|
|
[19]
|
姚凯骞. 独脚金内酯在CO2加富及菌根真菌促进磷吸收中的作用研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2016.
|
|
[20]
|
Roughier, H. and Read, D.J. (1998) The Role of Mycorrhiza in Determining the Response of Plantago lanceolata to CO2 Enrichment. New Phytologist, 139, 367. [Google Scholar] [CrossRef]
|
|
[21]
|
Wang, X.-F., Li, S.-Y., Bai, K.-Z., et al. (1998) Effects of Atmospheric CO2 Enrichment on the Root Surface Area of Plant and Colonization and Its Intensity of AMF in Plant. Chinese Science Bulletin, 43, 2083-2084. (In Chinese)
|
|
[22]
|
Staddon, P.L., Fitter, A.H. and Graves, D. (1999) Effect of Elevated Atmospheric CO2 on Mycorrhizal Colonization‚ External Mycorrhizal Hyphal Production and Phosphorus Inflow in Plantago lanceolata and Trifolium repens in Association with the Arbuscular Mycorrhizal Fungus Glomus mosseae. Global Change Biology‚ 5, 347-358. [Google Scholar] [CrossRef]
|
|
[23]
|
Duarte, A.G. and Maherali, H. (2022) A Meta-Analysis of the Effects of Climate Change on the Mutualism between Plants and Arbuscular Mycorrhizal Fungi. Ecology and Evolution, 12, e8518. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
汪杏芬, 李世仪, 白克智, 等. 大气CO2浓度倍增对植物根系表面积和泡囊–丛枝菌根侵染活力和强度的影响[J]. 科学通报, 1998, 43(19): 2083-2084.
|
|
[25]
|
Frederickson, M.E. (2017) Mutualisms Are Not on the Verge of Breakdown. Trends in Ecology and Evolution, 32, 727-734. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Shi, S., Luo, X., Dong, X., Qiu, Y., Xu, C. and He, X. (2021) Arbuscular Mycorrhization Enhances Nitrogen, Phosphorus and Potassium Accumulation in Vicia faba by Modulating Soil Nutrient Balance under Elevated CO2. Journal of Fungi (Basel), 7, 361. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ziska, L.H., Ghannoum, O., Baker, J., Conroy, J., Bunce, J.A., Kobayashi, K. and Okada, M. (2001) A Global Perspective of Ground Level, “Ambient” Carbon Dioxide for Assessing the Response of Plants to Atmospheric CO2. Global Change Biology, 7, 789-796. [Google Scholar] [CrossRef]
|
|
[28]
|
Shi, S., Luo, X., Wen, M., Dong, X., Sharifi, S., Xie, D. and He, X. (2021) Funneliformis Mosseae Improves Growth and Nutrient Accumulation in Wheat by Facilitating Soil Nutrient Uptake under Elevated CO2 at Daytime, Not Nighttime. Journal of Fungi (Basel), 7, 458. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Alberton, O., Kuyper, T.W. and Gorissen, A. (2005) Taking Mycocentrism Seriously: Mycorrhizal Fungal and Plant Responses to Elevated CO2. New Phytologist, 167, 859-868. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Cheng, L., Booker, F.L., Tu, C., Burkey, K.O., Zhou, L., Shew, H.D., Rufty, T.W. and Hu, S. (2012) Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition under Elevated CO2. Science, 337, 1084-1087. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Das, S., Bhattacharyya, P. and Adhya, T. (2011) Interaction Effects of Elevated CO2 and Temperature on Microbial Biomass and Enzyme Activities in Tropical Rice Soils. Environmental Monitoring and Assessment, 182, 555-569. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Singh, A.K., Rai, A., Kushwaha, M., Chauhan, P.S., Pandey, V. and Singh, N. (2019) Tree Growth Rate Regulate the Influence of Elevated CO2 on Soil Biochemical Responses under Tropical Condition. Journal of Environmental Management, 231, 1211-1221. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kelley, A.M., Fay, P.A., Polley, H.W., Gill, R.A. and Jackson, R.B. (2011) Atmospheric CO2 and Soil Extracellular Enzyme Activity: A Meta-Analysis and CO2 Gradient Experiment. Ecosphere, 2, art96. [Google Scholar] [CrossRef]
|
|
[34]
|
Sinsabaugh, R. (2005) Fungal Enzymes at the Community Scale. In: Dighton, J., White, J.F. and Oudemans, P., Eds., The Fungal Community: Its Organization and Role in the Ecosystem, Taylor and Francis, Boca Raton, 349-360. [Google Scholar] [CrossRef]
|
|
[35]
|
Allison, S., Hanson, C. and Treseder, K. (2007) Nitrogen Fertilization Reduces Diversity and Alters Community Structure of Active Fungi in Boreal Ecosystems. Soil Biology and Biochemistry, 39, 1878-1887. [Google Scholar] [CrossRef]
|
|
[36]
|
Klironomos, J.N., Ursic, M. and Rillig, M. (1998) Interspecific Differences in the Response of Arbuscular Mycorrhizal Fungi to Artemisia tridentata Grown under Elevated Atmospheric CO2. New Phytologist, 138, 599-605. [Google Scholar] [CrossRef]
|
|
[37]
|
Hodge, A., Campbell, C.D. and Fitter, A.H. (2001) An Arbuscular Mycorrhizal Fungus Accelerates Decomposition and Acquires Nitrogen Directly from Organic Material. Nature, 413, 297-299. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Procter, A.C., Ellis, J.C., Fay, P.A., Polley, H.W. and Jackson, R.B. (2014) Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type. Applied and Environmental Microbiology, 80, 7364-7377. [Google Scholar] [CrossRef]
|
|
[39]
|
Du, C., Wang, X., Zhang, M., Jing, J. and Gao, Y. (2019) Effects of Elevated CO2 on Plant C-N-P Stoichiometry in Terrestrial Ecosystems: A Meta-Analysis. Science of the Total Environment, 650, 697-708. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Treseder, K.K. (2004) A Meta-Analysis of Mycorrhizal Responses to Nitrogen, Phosphorus, and Atmospheric CO2 in field Studies. New Phytologist, 164, 347-355. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Butterly, C.R., Armstrong, R., Chen, D. and Tang, C. (2015) Carbon and Nitrogen Partitioning of Wheat and Field Pea Grown with Two Nitrogen Levels under Elevated CO2. Plant Soil, 391, 367-382. [Google Scholar] [CrossRef]
|
|
[42]
|
Loladze, I. (2014) Hidden Shift of the Ionome of Plants Exposed to Elevated CO2 Depletes Minerals at the Base of Human Nutrition. eLife, 3, e02245. [Google Scholar] [CrossRef]
|
|
[43]
|
Olesniewicz, K.S. and Thomas, R.B. (1999) Effects of Mycorrhizal Colonization on Biomass Production and Nitrogen fixation of Black Locust (Robinia pseudoacacia) Seedlings Grown under Elevated Atmospheric Carbon Dioxide. New Phytologist, 142, 133-140. [Google Scholar] [CrossRef]
|
|
[44]
|
Baslam, M., Garmendia, I. and Goicoechea, N. (2012) Elevated CO2 May Impair the Beneficial Effect of Arbuscular Mycorrhizal Fungi on the Mineral and Phytochemical Quality of Lettuce. Annals of Applied Biology, 161, 180-191. [Google Scholar] [CrossRef]
|
|
[45]
|
Chen, X., Tu, C., Burton, M.G., Watson, D.M., Burkey, K.O. and Hu, S. (2007) Plant Nitrogen Acquisition and Interactions under Elevated Carbon Dioxide: Impact of Endophytes and Mycorrhizae. Global Change Biology, 13, 1238-1249. [Google Scholar] [CrossRef]
|
|
[46]
|
Parvin, S., Uddin, S., Tausz-Posch, S., Armstrong, R. and Tausz, M. (2020) Carbon Sink Strength of Nodules But Not Other Organs Mod-Ulates Photosynthesis of Faba Bean (Vicia faba) Grown under Elevated [CO2] and Different Water Supply. New Phytologist, 227, 132-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zhu, C., Zeng, Q., Yu, H., Liu, S., Dong, G. and Zhu, J. (2016) Effect of Elevated CO2 on the Growth and Macronutrient (N, P and K) Uptake of Annual Wormwood (Artemisia annua L.). Pedosphere, 26, 235-242. [Google Scholar] [CrossRef]
|
|
[48]
|
Halpern, M., Bar-Tal, A., Lugassi, N., Egbaria, A., Granot, D. and Yermiyahu, U. (2018) The Role of Nitrogen in Photosynthetic Acclimation to Elevated [CO2] in Tomatoes. Plant Soil, 434, 397-411. [Google Scholar] [CrossRef]
|
|
[49]
|
Goicoechea, N., Bettoni, M.M., Fuertes-Mendizábal, T., Gonzalez-Murua, C. and Aranjuelo, I. (2016) Durum Wheat Quality Traits Affected by Mycorrhizal Inoculation, Water Availability and Atmospheric CO2 Concentration. Crop and Pasture Science, 67, 147. [Google Scholar] [CrossRef]
|
|
[50]
|
Saleh, A.M., Abdel-Mawgoud, M., Hassan, A.R., Habeeb, T.H., Yehia, R.S. and AbdElgawad, H. (2020) Global Metabolic Changes Induced by Arbuscular Mycorrhizal Fungi in Oregano Plants Grown under Ambient and Elevated Levels of Atmospheric CO2. Plant Physiology and Biochemistry, 151, 255-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Li, P., Han, X., Zong, Y., Li, H., Lin, E., Han, Y. and Hao, X. (2015) Effects of Free-Air CO2 Enrichment (FACE) on the Uptake and Utilization of N, P and K in Vigna radiata. Agriculture, Ecosystems & Environment, 202, 120-125. [Google Scholar] [CrossRef]
|
|
[52]
|
Ericsson, T. (1995) Growth and Shoot: Root Ratio of Seedlings in Relation to Nutrient Availability. Plant Soil, 168, 205-214. [Google Scholar] [CrossRef]
|
|
[53]
|
Habermann, E., De Oliveira, E.A.D., Contin, D.R., Martin, J.A.B.S., Curtarelli, L., Gonzalez-Meler, M.A. and Martinez, C.A. (2019) Stomatal Development and Conductance of a Tropical Forage Legume Are Regulated by Elevated [CO2 ] under Moderate Warming. Frontiers in Plant Science, 10, Article No. 609. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
McGrath, J.M. and Lobell, D.B. (2012) Reduction of Transpiration and Altered Nutrient Allocation Contribute to Nutrient Decline of Crops Grown in Elevated CO2 Concentrations. Plant, Cell & Environment, 36, 697-705. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Thirkell, T.J., Charters, M.D., Elliott, A.J., Sait, S.M. and Field, K.J. (2017) Are Mycorrhizal Fungi Our Sustainable Saviours? Considerations for Achieving Food Security. Journal of Ecology, 105, 921-929. [Google Scholar] [CrossRef]
|