|
[1]
|
远方, 屈淑平, 崔崇士. 一株新的胡萝卜软腐欧文氏菌的分离和鉴定[J]. 微生物学报, 2004, 44(2): 136-140.
|
|
[2]
|
雷玉明, 张建朝, 邢会琴. 几种杀菌剂对胡萝卜软腐欧文氏菌的毒力测定[J]. 长江大学学报(自然版), 2010, 7(3): 3-5.
|
|
[3]
|
B. Elhanan, K. Martin, W. Marcus, et al. Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proceeding of the National Academy of Science USA, 2008, 105(38): 14482- 14487.
|
|
[4]
|
K. Arakawa, Y. Yamada, K. Shinoda, et al. GEM System: Automatic prototyping of cell-wide metabolic pathway models from genomes. BMC Bioinformatics, 2006, 7: 168.
|
|
[5]
|
J. W. Pinney, M. W. Shirley, G. A. McConkey, et al. metaSHARK: Software for automated metabolic network prediction from DNA sequence and its application to the genomes of Plasmodium falciparum and Eimeria tenella. Nucleic Acids Research, 2005, 33(4): 1399-1409.
|
|
[6]
|
C. S. Henry, M. DeJongh, A. A. Best, et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nature Biotechnology, 2010, 28(9): 977-984.
|
|
[7]
|
H. Ma, A. P. Zeng. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics, 2003, 19(2): 270-277.
|
|
[8]
|
M. Huss, P. Holme. Currency and commodity metabolites: Their identification and relation to the modularity of metabolic networks. IET Systems Biology, 2007, 1(5): 280-285.
|
|
[9]
|
王卓, 陈琦, 刘雷. 代谢网络进化过程中拓扑结构与功能之间的关联[J]. 科学通报, 2009, 54(5): 776-782.
|
|
[10]
|
F. Zhu, Z. Shi, C. Qin, et al. Therapeutic target database update 2012: A resource for facilitating target-oriented drug discovery. Nucleic Acids Research, 2012, 40(D1): D1128-1136.
|
|
[11]
|
J. Schellenberger, R. Que, R. M. Fleming, et al. Quantitative prediction of cellular metabolism with constraint-based models: The COBRA toolbox v2.0. Nature Protocols, 2011, 6(9): 1290- 1307.
|
|
[12]
|
P. T. Lang, S. R. Brozell, S. Mukherjee, et al. DOCK 6: Combining techniques to model RNA—small molecule Complexes. RNA, 2009, 15(6): 1219-1230.
|
|
[13]
|
G. M. Morris, R. Huey, W. Lindstrom, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 2009, 30(16): 2785-2791.
|
|
[14]
|
H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai and A. L. Barabási. The large-scale organization of metabolic networks. Nature, 2000, 407(6804): 651-654.
|
|
[15]
|
S. H. Strogatz. Exploring complex networks. Nature, 2001, 410 (6825): 268-276.
|
|
[16]
|
Y.-P. Lu, H.-G. Liu, K.-H. Teng, et al. Mechanism of cis-prenyl- transferase reaction probed by substrate analogues. Biochemical and Biophysical Research Communications, 2010, 400(4): 758- 762
|
|
[17]
|
W. Sinko, C. Oliveira, S. Williams, et al. Applying molecular dynamics simulations to identify rarely sampled ligand-bound conformational states of undecaprenyl pyrophosphate synthase, an antibacterial target. Chemical Biology & Drug Desigh, 2011, 77 (6): 412-420
|
|
[18]
|
C. J. Kuo, R. T. Guo, I. L. Lu, et al. Structure-based inhibitors exhibit differential activities against Helicobacter pylori and Escherichia coli undecaprenyl pyrophosphate synthases. Journal of Biomedicine and Biotechnology, 2008: Article ID 841312.
|
|
[19]
|
R. T. Guo, T. P. Ko, A. P. Chen, et al. Crystal structures of undecaprenyl pyrophosphate synthase in complex with magnesium, lsopentenyl pyrophosphate, and farnesyl thiopyrophosphate: Roles of the metal ion and conserved residues in catalysis. The Journal of Biological Chemistry, 2005, 280(21): 20762-20774.
|